Thioredoxin glutathione reductase from Schistosoma mansoni (SmTGR) catalyzes the reduction of both thioredoxin and glutathione disulfides (GSSG), thus playing a crucial role in maintaining redox homeostasis in the parasite. In line with this role, previous studies have demonstrated that SmTGR is a promising drug target for schistosomiasis. To aid in the development of efficacious drugs that target SmTGR, it is essential to understand the catalytic mechanism of SmTGR. SmTGR is a dimeric flavoprotein in the glutathione reductase family and has a head-to-tail arrangement of its monomers; each subunit has the components of both a thioredoxin reductase (TrxR) domain and a glutaredoxin (Grx) domain. However, the active site of the TrxR domain is composed of residues from both subunits: FAD and a redox-active Cys-154/Cys-159 pair from one subunit and a redox-active Cys-596'/Sec-597' pair from the other; the active site of the Grx domain contains a redox-active Cys-28/Cys-31 pair. Via its Cys-28/Cys-31 dithiol and/or its Cys-596'/Sec-597' thiol-selenolate, SmTGR can catalyze the reduction of a variety of substrates by NADPH. It is presumed that SmTGR catalyzes deglutathionylation reactions via the Cys-28/Cys-31 dithiol. Our anaerobic titration data suggest that reducing equivalents from NADPH can indeed reach the Cys-28/Cys-31 disulfide in the Grx domain to facilitate reductions effected by this cysteine pair. To clarify the specific chemical roles of each redox-active residue with respect to its various reactivities, we generated variants of SmTGR. Cys-28 variants had no Grx deglutathionylation activity, whereas Cys-31 variants retained partial Grx deglutathionylation activity, indicating that the Cys-28 thiolate is the nucleophile initiating deglutathionylation. Lags in the steady-state kinetics, found when wild-type SmTGR was incubated at high concentrations of GSSG, were not present in Grx variants, indicating that this cysteine pair is in some way responsible for the lags. A Sec-597 variant was still able to reduce a variety of substrates, albeit slowly, showing that selenocysteine is important but is not the sole determinant for the broad substrate tolerance of the enzyme. Our data show that Cys-520 and Cys-574 are not likely to be involved in the catalytic mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3658134 | PMC |
http://dx.doi.org/10.1021/bi200107n | DOI Listing |
Chromatin remodeling enzymes play a crucial role in the organization of chromatin, enabling both stability and plasticity of genome regulation. These enzymes use a Snf2-type ATPase motor to move nucleosomes, but how they translocate DNA around the histone octamer is unclear. Here we use cryo-EM to visualize the continuous motion of nucleosomal DNA induced by human chromatin remodeler SNF2H, an ISWI family member.
View Article and Find Full Text PDFAtomic-scale changes can significantly impact heterogeneous catalysis, yet their atomic mechanisms are challenging to establish using conventional analysis methods. By using identical location scanning transmission electron microscopy (IL-STEM), which provides quantitative information at the single-particle level, we investigated the mechanisms of atomic evolution of Ru nanoclusters during the ammonia decomposition reaction. Nanometre-sized disordered nanoclusters transform into truncated nano-pyramids with stepped edges, leading to increased hydrogen production from ammonia.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
Phosphorescent gold(iii) complexes possess long-lived emissive excited states, making them ideal for use as molecular sensors and photosensitizers for organic transformations. Literature reports indicate that gold(iii) emitters exhibit good catalytic activity in homogeneous photochemical reactions. Heterogeneous metal-organic framework (MOF)-supported gold(iii) photocatalysts are considered to show high recyclability in photochemical reactions and potentially provide new selectivities.
View Article and Find Full Text PDFBiofilm
June 2025
State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China.
is a prevalent pathogen in both humans and marine species, exhibiting high adaptability to various adverse environmental conditions. Our previous studies have shown that Δ formed three enhanced biofilm types, including spectacular surface-attached biofilm (SB), scattered pellicle biofilm (PB), and colony rugosity. However, the precise mechanism through which regulates biofilm formation has remained unclear.
View Article and Find Full Text PDFACS Mater Au
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
The oxygen evolution reaction (OER) is a critical process in various sustainable energy technologies. Despite substantial progress in catalyst development, the practical application of OER catalysts remains hindered by the ongoing challenge of balancing high catalytic activity with long-term stability. We explore the inverse trends often observed between activity and stability, drawing on key insights from both experimental and theoretical studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!