Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry.

Environ Sci Technol

Water Management and Hydrologic Sciences, Texas A & M University, College Station, Texas 77843, United States.

Published: July 2011

Plant-derived biochars exhibit large physicochemical heterogeneity due to variations in biomass chemistry and combustion conditions. However, the influence of biochar heterogeneity on biochar-metal interaction mechanisms has not been systematically described. We used flow adsorption microcalorimetry to study structure-sorption relationships between twelve plant-derived biochars and two metals (K(+) and Cd(2+)) of different Lewis acidity. Irrespective of the biochar structure, sorption of K(+) (a hard Lewis acid) occurred predominantly on deprotonated functional groups via ion exchange with molar heats of adsorption (ΔH(ads)) of -4 kJ mol(-1) to -8 kJ mol(-1). By comparison, although ion exchange could not be completely ruled out, our data pointed to Cd(2+) (a soft Lewis acid) sorption occurring predominantly via two distinct cation-π bonding mechanisms, each with ΔH(ads) of +17 kJ mol(-1). The first, evident in low charge-low carbonized biochars, suggested Cd(2+)-π bonding to soft ligands such as -C ═ O; while the second, evident in low charge-highly carbonized biochars, pointed to Cd(2+)-π bonding with electron-rich domains on aromatic structures. Quantitative contributions of these mechanisms to Cd(2+) sorption can exceed 3 times that expected for ion exchange and therefore could have significant implications for the biogeochemical cycling of metals in fire-impacted or biochar-amended systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es104401hDOI Listing

Publication Analysis

Top Keywords

ion exchange
12
structure-sorption relationships
8
flow adsorption
8
adsorption microcalorimetry
8
plant-derived biochars
8
lewis acid
8
evident low
8
carbonized biochars
8
cd2+-π bonding
8
metal interactions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!