Background: Displaced intraarticular zone I and displaced zone II fractures of the proximal fifth metatarsal bone are frequently complicated by delayed nonunion due to a vascular watershed. Many complications have been reported with the commonly used intramedullary screw fixation for these fractures. The optimal surgical procedure for these fractures has not been determined. All these observations led us to evaluate the effectiveness of percutaneous bicortical screw fixation for treating these fractures.
Methods: Twenty-three fractures were operatively treated by bicortical screw fixation. All the fractures were evaluated both clinically and radiologically for the healing. All the patients were followed at 2 or 3 week intervals till fracture union. The patients were followed for an average of 22.5 months.
Results: Twenty-three fractures healed uneventfully following bicortical fixation, with a mean healing time of 6.3 weeks (range, 4 to 10 weeks). The average American Orthopaedic Foot & Ankle Society (AOFAS) score was 94 (range, 90 to 99). All the patients reported no pain at rest or during athletic activity. We removed the implant in all cases at a mean of 23.2 weeks (range, 18 to 32 weeks). There was no refracture in any of our cases.
Conclusions: The current study shows the effectiveness of bicortical screw fixation for displaced intraarticular zone I fractures and displaced zone II fractures. We recommend it as one of the useful techniques for fixation of displaced zone I and II fractures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3095785 | PMC |
http://dx.doi.org/10.4055/cios.2011.3.2.140 | DOI Listing |
J Dent Sci
January 2025
Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany.
Background/purpose: Although clinical studies have suggested a link between non-axial forces and reduced longevity of cervical restorations, the underlying mechanisms require further numerical investigation. This in-silico study employed a cohesive zone model (CZM) to investigate interfacial damage in a cervical restoration subjected to different load directions.
Materials And Methods: A plane strain model of a maxillary premolar was established, with a wedge-shaped buccal cervical restoration.
J Orthop
August 2025
Department of Orthopaedic Surgery, Hospital Clínico San Carlos, Spanish National Reference Center for Musculoskeletal Oncological Surgery, Calle Del Prof Martín Lagos, S/N, Moncloa, 28040, Madrid, Spain.
Objectives: To describe the functional outcomes, complications, and reconstruction types in patients with periacetabular metastases and to propose an extension of the Harrington classification.
Methods: Twenty-eight patients (13 males, 15 females) with a mean age of 63.8 ± 15.
Heliyon
January 2025
AU-Sophisticated Testing and Instrumentation Centre (AU-STIC), CoE-Advanced Materials Synthesis (CoE-AMS), Department of Mechanical Engineering, Alliance School of Applied Engineering, Alliance University, Bengaluru, 562106, India.
A consistent research attempt to develop newer lightweight-high strength materials facilitates the automobile sector to excel in product efficiency. The present research is another endeavour to anchor the automobile industries by exploring novel composite. The different earth elements SiC and YO are utilised for the hybrid reinforcement of Al 5052 alloy in four different weight proportions.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia.
In this work, the fracture mechanism of winding carbon-fiber-reinforced plastics (CFRPs) based on epoxy matrices reinforced by polysulfone film was investigated. Two types of polymer matrices were used: epoxy oligomer (EO) cured by iso-methyltetrahydrophthalic anhydride (iso-MTHPA), and EO-modified polysulfone (PSU) with active diluent furfuryl glycidyl ether (FGE) cured by iso-MTHPA. At the winding stage, the reinforcing film was placed in the middle layer of the CFRP.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
3D Printing Research and Engineering Technology Center, Beijing Institute of Aeronautical Materials, Beijing 100095, China.
This work investigated the CrNiMo stainless steel using laser selective melting (SLM) technology and explored the effect of the tempering temperature on the microstructure and properties. After the tempering treatment, the quenched martensite transformed from a metastable to steady state, and residual austenite was formed. The results indicated that the elongation of the transverse specimen showed an upward trend as the tempering temperature increased, while the elongation of the longitudinal specimen first increased and then decreased.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!