Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Clostridium perfringens enterotoxin (CPE) is responsible for causing the gastrointestinal symptoms of C. perfringens type A food poisoning, the second most commonly identified bacterial food-borne illness in the United States. CPE is produced by sporulating C. perfringens cells in the small intestinal lumen, where it then causes epithelial cell damage and villous blunting that leads to diarrhea and cramping. Those effects are typically self-limiting; however, severe outbreaks of this food poisoning, particularly two occurring in psychiatric institutions, have involved deaths. Since animal models are currently limited for the study of the CPE action, a mouse ligated intestinal loop model was developed. With this model, significant lethality was observed after 2 h in loops receiving an inoculum of 100 or 200 μg of CPE but not using a 50-μg toxin inoculum. A correlation was noted between the overall intestinal histological damage and lethality in mice. Serum analysis revealed a dose-dependent increase in serum CPE and potassium levels. CPE binding to the liver and kidney was detected, along with elevated levels of potassium in the serum. These data suggest that CPE can be absorbed from the intestine into the circulation, followed by the binding of the toxin to internal organs to induce potassium leakage, which can cause death. Finally, CPE pore complexes similar to those formed in tissue culture cells were detected in the intestine and liver, suggesting that (i) CPE actions are similar in vivo and in vitro and (ii) CPE-induced potassium release into blood may result from CPE pore formation in internal organs such as the liver.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3147562 | PMC |
http://dx.doi.org/10.1128/IAI.01342-10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!