Background: Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system.

Results: Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml.

Conclusions: Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be considered as a new phage purification method, appropriate for further investigations and development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127757PMC
http://dx.doi.org/10.1186/1472-6750-11-59DOI Listing

Publication Analysis

Top Keywords

affinity chromatography
20
phage
12
affinity tags
12
affinity
11
bacteriophage affinity
8
phage purification
8
vivo phage
8
phage display
8
phage genome
8
purification
6

Similar Publications

Lyophilized and Oven-Dried Extracts: Characterization and , , and Analyses.

Plants (Basel)

January 2025

Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico.

In this work, extracts from the pulp, peel, and seed of were obtained via lyophilization and oven drying. Bromatological analyses were performed to investigate variabilities in the nutritional content of fruits after nine post-harvest days. The phytochemical content of fruits was assessed by gas chromatography flame ionization detector (GC-FID), and their biological performance was studied using antibacterial and antioxidant assays (DPPH and ABTS) and toxicity models.

View Article and Find Full Text PDF

The Glycosylation of Serum IgG Antibodies in Post-COVID-19 and Post-Vaccination Patients.

Int J Mol Sci

January 2025

Institute of Chemistry, Faculty of Materials and Chemical Engineering, University of Miskolc, 3515 Miskolc, Hungary.

The signature of human serum IgG glycosylation is critical in the defense against pathogens. Alterations of IgG N-glycome were associated with COVID-19 (Coronavirus disease 2019) severity, although knowledge on the response to vaccination is limited. IgG N-glycome was analyzed in this study in post-COVID-19 and post-vaccination patients to reveal potential glycosylation-based alterations using hydrophilic interaction liquid chromatography (HILIC-UPLC) with fluorescence (FLR) and mass-spectrometric (MS) detection.

View Article and Find Full Text PDF

Nicking Activity of M13 Bacteriophage Protein 2.

Int J Mol Sci

January 2025

Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Türkiye.

Gene II Protein (Gp2/P2) is a nicking enzyme of the M13 bacteriophage that plays a role in the DNA replication of the viral genome. P2 recognizes a specific sequence at the f1 replication origin and nicks one of the strands and starts replication. This study was conducted to address the limitations of previous experiments, improve methodologies, and precisely determine the biochemical activity conditions of the P2 enzyme in vitro.

View Article and Find Full Text PDF

Recombinant Production of Bovine α-Casein in Genome-Reduced Strain IIG-Bs-20-5-1.

Microorganisms

January 2025

Institute of Food Science and Biotechnology, Department of Bioprocess Engineering, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany.

Background: Cow's milk represents an important protein source. Here, especially casein proteins are important components, which might be a promising source of alternative protein production by microbial expression systems. Nevertheless, caseins are difficult-to-produce proteins, making heterologous production challenging.

View Article and Find Full Text PDF

Geniposidic 4-isoamyl ester (GENI) with anti-aging effects is a new iridoid glycoside derivative from Ellis found in our previous study. In this study, to indicate whether this compound has anti-Alzheimer's disease (AD) effect, the galactose-induced AD mice and naturally aging mice with AD were used to do drug efficacy evaluation. Furthermore, the Western blot, small interfering RNA (siRNA), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CESTA), liquid chromatography-tandem mass spectrometry (LC/MS-MS), adenosine 5'-monophosphate-activated protein kinase (AMPK) mutants and surface plasmon resonance (SPR) analysis were utilized to clarify the mechanism of action and identify target protein of this molecule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!