Phenolic constituents of a new functional fermented tea produced by tea-rolling processing of a mixture (9:1) of tea leaves and loquat leaves were examined in detail. The similarity of the phenolic composition to that of black tea was indicated by high-performance liquid chromatography comparison with other tea products. Twenty-five compounds, including three new catechin oxidation products, were isolated, and the structures of the new compounds were determined to be (2R)-2-hydroxy-3-(2,4,6-trihydroxyphenyl)-1-(3,4,5-trihydroxyphenyl)-1-propanone 2-O-gallate, dehydrotheasinensin H, and acetonyl theacitrin A by spectroscopic methods. In addition, theacitrinin A and theasinensin H were obtained for the first time from commercial tea products. Isolation of these new and known compounds confirms that reactions previously demonstrated by in vitro model experiments actually occur when fresh tea leaves are mechanically distorted and bruised during the production process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf201499nDOI Listing

Publication Analysis

Top Keywords

functional fermented
8
tea
8
fermented tea
8
tea-rolling processing
8
loquat leaves
8
tea leaves
8
tea products
8
polyphenol composition
4
composition functional
4
tea tea-rolling
4

Similar Publications

Pomegranate peels are an industrial by-product high in sugar and phytochemical content and pose an environmental concern. Meanwhile, ensiling legume forage such as berseem is difficult due to its lower dry matter content and water-soluble carbohydrate-to-buffering capacity ratio, which leads to a poor fermentation process. To date, no studies have been conducted to investigate the effect of co-ensiling pomegranate peels with berseem.

View Article and Find Full Text PDF

The Role of SWI/SNF Complex in Bladder Cancer.

J Cell Mol Med

January 2025

Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.

Bladder cancer originates from bladder tissues and is the ninth most common type of cancer worldwide. The SWI/SNF (SWItch/sucrose non- fermentable) complex plays a crucial role in regulating various biological processes, such as cell cycle control, DNA damage repair and transcription regulation. The purpose of this article is to examine the functional studies of the SWI/SNF complex in bladder cancer, highlighting new pathways for creating personalised treatment approaches for bladder cancer patients with mutations in the SWI/SNF complex.

View Article and Find Full Text PDF

The unintended microbiological production of hydrogen sulphide (HS) poses a significant challenge in engineered systems, including sewage treatment plants, landfills and aquaculture systems. Although sulphur-rich amino acids and other substrates conducive to non-sulphate-based HS production are frequently present, the capacity and potential of various microorganisms to perform sulphate-free HS production remain unclear. In this study, we identify the identity, activity and genomic characteristics of bacteria that degrade cysteine to produce HS in anaerobic enrichment bioreactors seeded with material from aquaculture systems.

View Article and Find Full Text PDF

Oral antibiotic treatment is well known to be one of the main factors affecting gut microbiota composition by altering bacterial diversity. It decreases the abundance of butyrate-producing bacteria such as Lachnospiraceae and Ruminococcaceae, while increasing abundance of Enterobacteriaceae. The recovery time of commensal bacteria post-antibiotic treatment varies among individuals, and often, complete recovery is not achieved.

View Article and Find Full Text PDF

Lipophilic antioxidants in edible oils: Mechanisms, applications and interactions.

Food Res Int

January 2025

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China. Electronic address:

Essential fatty acids (EFAs) in edible oils are crucial for human nutrition. However, their high unsaturation renders edible oils susceptible to oxidation during storage and processing. The addition of lipophilic antioxidants is an effective strategy to inhibit oxidation and safeguard the nutritional integrity of edible oils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!