The digallium compound R(2)Ga-GaR(2) (1; R=CH(SiMe(3))(2)) reacts with citracinic acid by the release of two equivalents of bis(trimethylsilyl)methane and the formation of a unique oligofunctional cage compound (2). Four Ga-Ga bonds in a tetrahedral arrangement are bridged by four spacer ligands that are located on the faces of the tetrahedron and bridge the gallium atoms of three different Ga-Ga bonds. Four pyridinium groups result from the shift of one of the three acidic protons of four citracinic acid molecules to the nitrogen atoms of the aromatic rings. The N-H groups are arranged in pairs and are capable of acting as chelating acceptors for the coordination of THF molecules (2(THF)(2)) or the nitrogen atoms of 1-deazapurine (3(OEt(2))(4)). In particular, the last reaction verifies the potential applicability of this relatively water- and air-resistant acceptor compound for the generation of bioorganometallic hybrid molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201100865DOI Listing

Publication Analysis

Top Keywords

cage compound
8
hybrid molecules
8
citracinic acid
8
ga-ga bonds
8
nitrogen atoms
8
synthesis large
4
large functional
4
functional cage
4
compound
4
compound based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!