Valid experimental models and behavioral tests are indispensable for the development of therapies for stroke. The translational failure with neuroprotective drugs has forced us to look for alternative approaches. Restorative therapies aiming to facilitate the recovery process by pharmacotherapy or cell-based therapy have emerged as promising options. Here we describe the most common stroke models used in cell-based therapy studies with particular emphasis on their inherent complications, which may affect behavioral outcome. Loss of body weight, stress, hyperthermia, immunodepression, and infections particularly after severe transient middle cerebral artery occlusion (filament model) are recognized as possible confounders to impair performance in certain behavioral tasks and bias the treatment effects. Inherent limitations of stroke models should be carefully considered when planning experiments to ensure translation of behavioral data to the clinic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11114796 | PMC |
http://dx.doi.org/10.1007/s00018-011-0733-3 | DOI Listing |
Nat Chem Biol
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
Synthetic circuits that regulate protein secretion in human cells could support cell-based therapies by enabling control over local environments. Although protein-level circuits enable such potential clinical applications, featuring orthogonality and compactness, their non-human origin poses a potential immunogenic risk. In this study, we developed Humanized Drug Induced Regulation of Engineered CyTokines (hDIRECT) as a platform to control cytokine activity exclusively using human-derived proteins.
View Article and Find Full Text PDFNature
January 2025
Laboratory of Protein Design and Immunoengineering, Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland.
Molecular recognition events between proteins drive biological processes in living systems. However, higher levels of mechanistic regulation have emerged, in which protein-protein interactions are conditioned to small molecules. Despite recent advances, computational tools for the design of new chemically induced protein interactions have remained a challenging task for the field.
View Article and Find Full Text PDFBlood Adv
January 2025
Harvard Medical School, United States.
Efficacy and durability remain central shortcomings of T-cell based therapies in multiple myeloma (MM). Here, we employ blood-based transcriptional T-cell profiling to define impaired T-cell fitness as putative biomarker associated with sensitivity to PD1 inhibition in CAR-T refractory MM patients.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran.
Background: The challenges associated with traditional drug screening, such as high costs and long screening times, have led to an increase in the use of single-cell isolation technologies. Small sample volumes are required for high-throughput, cell-based assays to reduce assay costs and enable rapid sample processing. Using microfluidic chips, single-cell analysis can be conducted more effectively, requiring fewer reagents and maintaining biocompatibility.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Objectives: To report myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) epidemiology in two American regions using 2023 diagnostic criteria.
Patients And Methods: We compared age- and sex-adjusted incidence and prevalence of MOGAD per 2023 diagnostic criteria in Olmsted County (Minnesota [USA]) and Martinique (Caribbean [FR]) (01/01/2003-12/31/2018, prevalence day) using Poisson regression. Archived sera in 68-85% were available for MOG-IgG testing by live cell-based assay at Mayo Clinic.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!