The molecular geometries, vibrational properties, and thermodynamic properties of the clusters (Br(2)GaN(3))( n )(n = 1-4) were studied at the B3LYP/6-311+G* level. The optimized clusters (Br(2)GaN(3))( n )(n = 2-4) were all found to possess a cyclic structure consisting of Ga atoms bridged by the α-nitrogen of the azide groups. A discussion of the relationships between the geometrical parameters and the degree of oligomerization n is provided. Features in the IR spectra were assigned by vibrational analysis. Trends in thermodynamic properties with temperature and degree of oligomerization n are discussed. Thermodynamic analysis of the gas-phase reaction showed that the formation of the clusters (Br(2)GaN(3))( n )(n = 2-4) is thermodynamically favorable considering the enthalpies at 298.2 K. The calculated results for the Gibbs free energies were negative, which indicates that the oligomerizations can occur spontaneously at 298.2 K.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-011-1126-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!