Background: Dysregulation of host immune responses plays a critical role in the pathogenesis of severe 2009 pandemic H1N1 infection. Whether H1N1 virus could escape innate immune defense in vivo remains to be investigated. The aim of this study was to evaluate the pattern of innate immune response during human 2009 H1N1 infection. We performed the enumeration of circulating myeloid dendritic cells (mDC) and plasmacytoid DC (pDC) in blood from patients with H1N1 pneumonia shortly after the onset of symptoms and during follow-up at different intervals of time. The analysis of CD4 and CD8 count, CD38 T-cell activation marker and serum cytokine/chemokine plasma levels was also done.

Methodology/principal Findings: Blood samples were collected from 13 hospitalized patients with confirmed H1N1-related pneumonia at time of admission and at weeks 1, 4, and 16 of follow-up. 13 healthy donors were enrolled as controls. In the acute phase of the disease, H1N1-infected patients exhibited a significant depletion in both circulating pDC and mDC in conjunction with a decrease of CD4 and CD8 T cell count. In addition, we found plasmatic hyperproduction of IP-10 and RANTES, whereas increase in T-cell immune activation was found at all time points. When we assessed the changes in DC count over time, we observed a progressive normalization of mDC number. On the contrary, H1N1-infected patients did not achieve a complete recovery of pDC count as values remained lower than healthy controls even after 16 weeks of follow-up.

Conclusions: H1N1 disease is associated with a profound depletion of DC subsets. The persistence of pDC deficit for several weeks after disease recovery could be due to H1N1 virus itself or to a preexisting impairment of innate immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098245PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019872PLOS

Publication Analysis

Top Keywords

h1n1 infection
12
depletion circulating
8
dendritic cells
8
2009 pandemic
8
pandemic h1n1
8
h1n1 virus
8
innate immune
8
cd4 cd8
8
h1n1-infected patients
8
h1n1
7

Similar Publications

Novel Pyrrolidine-bearing quinoxaline inhibitors of DNA Gyrase, RNA polymerase and spike glycoprotein.

Bioorg Chem

January 2025

Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754 Egypt. Electronic address:

Anti-infective agents are a class of drugs used to prevent, treat, or control infections caused by microorganisms such as bacteria, viruses, fungi, and parasites. They play a crucial role in modern medicine, helping to reduce the severity of infections and, in many cases, save lives. This study aims at the design and synthesis of hybrid compounds containing quinoxaline, pyrrolidine, and an azo bridge to combat antimicrobial resistance, and evaluating their antimicrobial, antifungal, and antiviral activities against various pathogenic strains.

View Article and Find Full Text PDF

VV-ECMO adjuvant therapy for complicated with H1N1 infection: a case report.

Front Med (Lausanne)

January 2025

Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Clinical Research Center for Critical Care Medicine, Guangxi, China.

Background: Leptospirosis is an acute infectious disease that occurs by infection, progresses rapidly, and has a high mortality rate, with an estimated 1.2 million new cases and nearly 59,000 deaths each year. Due to its diverse clinical manifestations, diagnosis is often delayed.

View Article and Find Full Text PDF

Objectives: To investigate the prevalence of nine respiratory viruses and their clinical characteristics in children aged up to 5 years old in the state of Sergipe, Northeast of Brazil in the pre-COVID-19 pandemic period.

Methods: Children with suspected influenza virus infection were included in the study. Clinical samples were screened using real-time quantitative polymerase chain reaction for the diagnosis of adenovirus, parainfluenza (PIV)1, PIV2, PIV3, and human metapneumovirus.

View Article and Find Full Text PDF

Recombinant probiotic Escherichia coli delivers the polymeric protein of swine influenza virus for protection.

Vet Microbiol

January 2025

College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China. Electronic address:

Swine influenza virus invades the host through the respiratory mucosa, which severely restricts the development of the pig breeding industry. To construct monomeric and trimeric vaccines, we developed recombinant Escherichia coli Nissle 1917 (EcN) strains that express the receptor binding site (RBS) of the hemagglutinin (HA) antigen from H1N1 swine influenza virus. After the mucosal immunization of mice, we found that probiotics activated CD40 and CD86 in DCs and increased the levels of IL-4 and IFN-γ secretion by T cells.

View Article and Find Full Text PDF

Acute respiratory infections (ARIs) are a leading cause of death in children under five globally. The seasonal trends and profiles of respiratory viruses vary by region and season. Due to limited information and the population's vulnerability, we conducted the hospital-based surveillance of respiratory viruses in Eastern Uttar Pradesh.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!