A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of metabolites in the normal ovary and their transformation in primary and metastatic ovarian cancer. | LitMetric

Identification of metabolites in the normal ovary and their transformation in primary and metastatic ovarian cancer.

PLoS One

Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, United States of America.

Published: October 2011

In this study, we characterized the metabolome of the human ovary and identified metabolic alternations that coincide with primary epithelial ovarian cancer (EOC) and metastatic tumors resulting from primary ovarian cancer (MOC) using three analytical platforms: gas chromatography mass spectrometry (GC/MS) and liquid chromatography tandem mass spectrometry (LC/MS/MS) using buffer systems and instrument settings to catalog positive or negative ions. The human ovarian metabolome was found to contain 364 biochemicals and upon transformation of the ovary caused changes in energy utilization, altering metabolites associated with glycolysis and β-oxidation of fatty acids--such as carnitine (1.79 fold in EOC, p<0.001; 1.88 fold in MOC, p<0.001), acetylcarnitine (1.75 fold in EOC, p<0.001; 2.39 fold in MOC, p<0.001), and butyrylcarnitine (3.62 fold, p<0.0094 in EOC; 7.88 fold, p<0.001 in MOC). There were also significant changes in phenylalanine catabolism marked by increases in phenylpyruvate (4.21 fold; p = 0.0098) and phenyllactate (195.45 fold; p<0.0023) in EOC. Ovarian cancer also displayed an enhanced oxidative stress response as indicated by increases in 2-aminobutyrate in EOC (1.46 fold, p = 0.0316) and in MOC (2.25 fold, p<0.001) and several isoforms of tocopherols. We have also identified novel metabolites in the ovary, specifically N-acetylasparate and N-acetyl-aspartyl-glutamate, whose role in ovarian physiology has yet to be determined. These data enhance our understanding of the diverse biochemistry of the human ovary and demonstrate metabolic alterations upon transformation. Furthermore, metabolites with significant changes between groups provide insight into biochemical consequences of transformation and are candidate biomarkers of ovarian oncogenesis. Validation studies are warranted to determine whether these compounds have clinical utility in the diagnosis or clinical management of ovarian cancer patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098284PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019963PLOS

Publication Analysis

Top Keywords

ovarian cancer
12
mass spectrometry
8
identification metabolites
4
metabolites normal
4
normal ovary
4
ovary transformation
4
transformation primary
4
primary metastatic
4
ovarian
4
metastatic ovarian
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!