The cellular arm of the immune response plays a central role in the defense against intracellular pathogens, such as F. tularensis. To date, whole genome immunoinformatic analyses were limited either to relatively small genomes (e.g. viral) or to preselected subsets of proteins in complex pathogens. Here we present, for the first time, an unbiased bacterial global immunoinformatic screen of the 1740 proteins of F. tularensis subs. holarctica (LVS), aiming at identification of immunogenic peptides eliciting a CTL response. The very large number of predicted MHC class I binders (about 100,000, IC(50) of 1000 nM or less) required the design of a strategy for further down selection of CTL candidates. The approach developed focused on mapping clusters rich in overlapping predicted epitopes, and ranking these "hotspot" regions according to the density of putative binding epitopes. Limited by the experimental load, we selected to screen a library of 1240 putative MHC binders derived from 104 top-ranking highly dense clusters. Peptides were tested for their ability to stimulate IFNγ secretion from splenocytes isolated from LVS vaccinated C57BL/6 mice. The majority of the clusters contained one or more CTL responder peptides and altogether 127 novel epitopes were identified, of which 82 are non-redundant. Accordingly, the level of success in identification of positive CTL responders was 17-25 fold higher than that found for a randomly selected library of 500 predicted MHC binders (IC(50) of 500 nM or less). Most proteins (ca. 2/3) harboring the highly dense hotspots are membrane-associated. The approach for enrichment of true positive CTL epitopes described in this study, which allowed for over 50% increase in the dataset of known T-cell epitopes of F. tularensis, could be applied in immunoinformatic analyses of many other complex pathogen genomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3098878 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0020050 | PLOS |
PLoS Negl Trop Dis
January 2025
Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China.
Severe Fever with Thrombocytopenia Syndrome virus (SFTSV) is a novel identified pathogen, despite two decades of research on SFTSV, the potential widespread threats pose a significant challenge for researchers in developing new treatment and prevention methods. In this present, we have developed a multi-epitope mRNA vaccine for SFTSV and valid it with in silico methods. We screened 9 immunodominant epitopes for cytotoxic T cells (CTL), 7 for helper T cells (HTL), and 8 for Linear B-cell (LBL) based on promising candidate protein Gn, Gc, Np, and NSs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Bahir Dar University, P.O.Box 79, Bahir Dar, Ethiopia.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed substantial challenges on our society due to the COVID-19 pandemic. This virus relies heavily on its surface glycoprotein (S-glycoprotein) to facilitate attachment, fusion, and entry into host cells. While the nucleoprotein (N) in the ribonucleoprotein core binds to the viral RNA genome.
View Article and Find Full Text PDFPLoS One
January 2025
Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh.
Streptococcus pneumoniae (SPN) is a significant pathogen causing pneumonia and meningitis, particularly in vulnerable populations like children and the elderly. Available pneumonia vaccines have limitations since they only cover particular serotypes and have high production costs. The emergence of antibiotic-resistant SPN strains further underscores the need for a new, cost-effective, broad-spectrum vaccine.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará 60714-903, Brazil.
Leishmaniasis is a chronic inflammatory zoonotic illness caused by protozoan flagellates belonging to the genus. Current data suggest that over 1 billion people worldwide are susceptible to infection, primarily in tropical and subtropical countries, where up to 2 million new cases are reported annually. Therefore, the development of a vaccine is crucial to combating this disease.
View Article and Find Full Text PDFJ Microbiol Biotechnol
November 2024
Fatemah AlMalki, Biology Department, College of Science and Humanities- Al Quwaiiyah, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia.
is a gram-negative, facultatively anaerobic bacterium typically found in the oropharynx and respiratory tract of humans. It is responsible for various infections, including head-and-neck infections, pericarditis, and abscesses of the deltoid, perirenal tissue, brain, and liver. Increasing antibiotic resistance requires urgent identification of novel drug targets to fight this bacterium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!