Fluorescence lifetime imaging (FLIM) is a powerful approach to studying the immediate environment of molecules. For example, it is used in biology to study changes in the chemical environment, or to study binding processes, aggregation, and conformational changes by measuring Förster resonance energy transfer (FRET) between donor and acceptor fluorophores. FLIM can be acquired by time-domain measurements (time-correlated single-photon counting) or frequency-domain measurements (with PMT modulation or digital frequency domain acquisition) in a confocal setup, or with wide-field systems (using time-gated cameras). In the best cases, the resulting data is analyzed in terms of multicomponent fluorescence lifetime decays with demanding requirements in terms of signal level (and therefore limited frame rate). Recently, the phasor approach has been proposed as a powerful alternative for fluorescence lifetime analysis of FLIM, ensemble, and single-molecule experiments. Here we discuss the advantages of combining phasor analysis with a new type of FLIM acquisition hardware presented previously, consisting of a high temporal and spatial resolution wide-field single-photon counting device (the H33D detector). Experimental data with live cells and quantum dots will be presented as an illustration of this new approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103255 | PMC |
http://dx.doi.org/10.1117/12.809496 | DOI Listing |
1The brains of Parkinson's disease (PD) patients are characterized by the presence of Lewy body inclusions enriched with fibrillar forms of the presynaptic protein alpha-synuclein (aSyn). Despite related evidence that Lewy pathology spreads across different brain regions as the disease progresses, the underlying mechanism hence the fundamental cause of PD progression is unknown. The propagation of aSyn pathology is thought to potentially occur through the release of aSyn aggregates from diseased neurons, their uptake by neighboring healthy neurons via endocytosis, and subsequent seeding of native aSyn aggregation in the cytosol.
View Article and Find Full Text PDF1Parkinson's disease (PD) involves the aggregation of the protein alpha-synuclein, a process promoted by interactions with intracellular membranes. To study this phenomenon in neurons for the first time, we developed a fluorescence lifetime imaging (FLIM) method using Förster resonance energy transfer and self-quenching reporters, analyzed with a custom-built FLIM microscope. This method offers insights into aggregate formation in PD and can be broadly applied to probe protein-membrane interactions in neurons.
View Article and Find Full Text PDFRSC Adv
January 2025
Nanoscience Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology New Borg El-Arab City Alexandria Egypt
We report herein a facile synthesis, characterization, and the electron transfer reaction of a novel light-harvesting material composed of laser-induced graphene (LIG) functionalized with the photoactive 5,10,15,20-tetrakis(4-trimethylammoniophenyl)porphyrin tetra(-toluenesulfonate) dye (TTMAPP). LIG was easily fabricated on the surface of a polyimide sheet using VersaLASER 3.6 (VLS 3.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China. Electronic address:
Research on multifunctional luminous materials has garnered a lot of interest in the fields of optical sensing, biological imaging, white light-emitting diodes illumination, etc. A novel multifunctional phosphor of Pr-doped BiMoO (BMO: Pr), created via the solid-state method, was investigated in this work. X-ray diffraction, scanning electron microscopy, diffuse reflectance spectroscopy, photoluminescence spectra, and fluorescence decay curves were employed to analyze the produced phosphors.
View Article and Find Full Text PDFJ Hand Surg Am
January 2025
Hand and Upper Extremity Division of Plastic and Reconstructive Surgery, University of California Davis, Sacramento, CA.
Purpose: Current technologies to define the zone of acute peripheral nerve injury intraoperatively are limited by surgical experience, time, cumbersome electrodiagnostic equipment, and interpreter reliability. In this pilot study, we evaluated a real-time, label-free optical technique for intraoperative nerve injury imaging. We hypothesize that fluorescence lifetime imaging (FLIm) will detect a difference between the time-resolved fluorescence signatures for acute crush injuries versus uninjured segments of peripheral nerves in sheep.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!