ADGO 2.0 is a web-based tool that provides composite interpretations for microarray data comparing two sample groups as well as lists of genes from diverse sources of biological information. Some other tools also incorporate composite annotations solely for interpreting lists of genes but usually provide highly redundant information. This new version has the following additional features: first, it provides multiple gene set analysis methods for microarray inputs as well as enrichment analyses for lists of genes. Second, it screens redundant composite annotations when generating and prioritizing them. Third, it incorporates union and subtracted sets as well as intersection sets. Lastly, users can upload their own gene sets (e.g. predicted miRNA targets) to generate and analyze new composite sets. The first two features are unique to ADGO 2.0. Using our tool, we demonstrate analyses of a microarray dataset and a list of genes for T-cell differentiation. The new ADGO is available at http://www.btool.org/ADGO2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125784 | PMC |
http://dx.doi.org/10.1093/nar/gkr392 | DOI Listing |
J Hered
January 2025
The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies; Institute of Ecology, Peking University, Beijing 100871, China.
In the fall of 2003, a two-year-old tiger named Ming, weighing some four hundred pounds, was discovered living in an apartment in Harlem, New York. Ming's rescue by NYPD was witnessed, recalled, and venerated by scores of neighbors. The tiger's history and ancestry stimulated considerable media interest, investigative sleuthing, and forensic genomic analyses.
View Article and Find Full Text PDFPathogens
January 2025
Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
is the causative agent of Chagas disease, a neglected tropical disease, and one of the most important parasitic diseases worldwide. The first genome of was sequenced in 2005, and its complexity made assembly and annotation challenging. Nowadays, new sequencing methods have improved some strains' genome sequence and annotation, revealing this parasite's extensive genetic diversity and complexity.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Life Sciences, Nanchang University, Nanchang 330031, China.
is a fully mycoheterotrophic orchid that lacks both leaves and roots, belonging to the genus in the subtribe Calypsoinae. In this study, we assembled and annotated its mitochondrial genome (397,867 bp, GC content: 42.70%), identifying 55 genes, including 37 protein-coding genes (PCGs), 16 tRNAs, and 2 rRNAs, and conducted analyses of relative synonymous codon usage (RSCU), repeat sequences, horizontal gene transfers (HGTs), and gene selective pressure (dN/dS).
View Article and Find Full Text PDFGenes (Basel)
January 2025
Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China.
Background: Leaves are the main organs involved in photosynthesis. They capture light energy and promote gas exchange, and their size and shape affect yield. Identifying the regulatory networks and key genes that control citrus leaf size is essential for increasing citrus crop yield.
View Article and Find Full Text PDFMetabolomics
January 2025
Laboratory of Organic Chemistry, Wageningen University & Research, 6708 WE, Wageningen, the Netherlands.
Introduction And Objective: Rumex sanguineus, a traditional medicinal plant of the Polygonaceae family, is gaining popularity as an edible resource. However, despite its historical and nutritional significance, its chemical composition remains poorly understood. To deepen the understanding of the of Rumex sanguineus composition, an in-depth analysis using non-targeted, mass spectrometry-based metabolomics was performed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!