Neutrophils harvested from the peritoneal cavities of rats have been shown to release a factor that relaxes precontracted aorta and has a pharmacologic profile similar to that previously reported for endothelium-derived relaxing factor (EDRF). The present study was designed to determine if this neutrophil-derived relaxing factor (NDRF) relaxes rat aortic smooth muscle by affecting the intracellular cGMP levels. Aortic sheets (endothelium removed) were incubated in organ chambers in a physiological salt solution containing phenylephrine (1 x 10(-7) M) and superoxide dismutase (10 or 100 U/ml). Basal cGMP levels (10-15 pmoles/g tissue) were not affected by the incubation reagents. Neutrophils (3 x 10(6) to 1 x 10(8) cells/10 ml) increased cGMP, but not cAMP, levels in a cell number-dependent manner. Peak induction occurred at 5 min of incubation. Methylene blue (1 x 10(-5) M) inhibited and zaprinast (1 x 10(-5) M) potentiated the neutrophil-induced increases in cGMP. The data thus support the hypothesis that neutrophil-induced vascular smooth muscle relaxation is mediated through a factor, NDRF, which increases intracellular cGMP levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0024-3205(90)90426-r | DOI Listing |
J Phys Chem B
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506, United States.
measurement and mapping of oxygen levels within the tissues are crucial in understanding the physiopathological processes of numerous diseases, such as cancer, diabetes, or peripheral vascular diseases. Electron paramagnetic resonance (EPR) associated with biocompatible exogenous spin probes, such as Ox071 triarylmethyl (TAM) radical, is becoming the new gold standard for oxygen mapping in preclinical settings. However, these probes do not show tissue selectivity when injected systemically, and they are not cell permeable, reporting oxygen from the extracellular compartment only.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
Achieving dual functionalities of hydrophobicity and excellent microwave transmission in a single material remains a significant challenge, especially for advanced applications in aerospace, telecommunications, and navigation engineering. Inspired by natural designs like chestnut burrs, bioinspired polyaniline (PANI) particles with tunable micro-/nanostructures through a facile template-free polymerization process have been developed. By regulating the polarity of the reaction system, temperature, and reaction time, various hierarchical structures, including cross-linked nanosheets, chestnut burr-like spheres, and starburst flower-like structures, are synthesized.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan.
Thermal engineering can be used to exploit absorption in a silicon optical cavity. In this work, the steady state profile of the heat generated by absorption is shaped and used to generate a dynamic heterostructure in a weakly confined silicon optical cavity. This is demonstrated in an edge defect photonic crystal optomechanical cavity to produce phonon lasing and sub-GHz optical pulsing with photon-phonon cooperativity of 0.
View Article and Find Full Text PDFThrough the investigation of spectral characteristics, the evolution of cluster proportions and the cross-relaxation process in Tm:CaF crystals as a function of Tm doping concentration has been clarified. A quantitative model has been established to describe the relationship between these factors. At low concentrations (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!