The ascomycete fungus Mycosphaerella graminicola is the causal agent of Septoria Tritici Blotch disease of wheat and can grow as yeast-like cells or as hyphae depending on environmental conditions. Hyphal growth is however essential for successful leaf infection. A T-DNA mutagenesis screen performed on haploid spores identified a mutant, which can undergo yeast-like growth but cannot switch to hyphal growth. For this reason the mutant was non-pathogenic towards wheat leaves. The gene affected, MgAlg2, encoded a homologue of Saccharomyces cerevisiae ScAlg2, an alpha-1,2-mannosyltransferase, which functions in the early stages of asparagine-linked protein (N-) glycosylation. Targeted gene deletion and complementation experiments confirmed that loss of MgAlg2 function prevented the developmental growth switch. MgAlg2 was able to functionally complement the S. cerevisiae ScAlg2-1 temperature sensitive growth phenotype. Spores of ΔMgAlg2 mutants were hypersensitive to the cell wall disrupting agent Calcofluor white and produced abnormally hypo-N-glycosylated proteins. Gene expression, proteome and glycoproteome analysis revealed that ΔMgAlg2 mutant spores show responses typically associated with the accumulation of mis-folded proteins. The data presented highlight key roles for protein N-glycosylation in regulating the switch to hyphal growth, possibly as a consequence of maintaining correct folding and localization of key proteins involved in this process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.2011.07701.x | DOI Listing |
J Environ Manage
January 2025
College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:
Communities of arbuscular mycorrhizal fungi (AMF) in soil are influenced by various agricultural managements, which in turn affects crop productivity. However, the impacts of straw returning on AMF communities are sparsely understood. Here, a 7-year field experiment including three sets of straw managements - returning methods (CK: no-tillage without straw; RT-SR: rotary tillage with straw; DB-SR: ditch-buried tillage with straw), burial amount, burial depth - were applied to evaluate the influences of straw managements on AMF composition.
View Article and Find Full Text PDFPhytopathology
January 2025
Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;
Gray mold is an important disease of crops and is widespread, harmful, difficult to control, and prone to developing fungicide resistance. Screening new fungicides is an important step in controlling this disease. Hydroxychloroquine is an anti-inflammatory and anti-malarial agent, which has shown marked inhibitory activity against many fungi in medicine.
View Article and Find Full Text PDFJ Microsc
January 2025
The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.
View Article and Find Full Text PDFPlant Dis
January 2025
Shanghai Jiao Tong University, Shanghai, China;
Polygonatum cyrtonema Hua (Duohua Huangjing, Asparagaceae in angiosperms) is a traditional medicinal and edible plant in China. Its rhizomes can potentially enhance immunity, reduce tumor growth and the effects of aging, improve memory, and even reduce blood sugar levels (Zhao et al. 2020).
View Article and Find Full Text PDFPLoS One
January 2025
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.
Through their expansive mycelium network, soil fungi alter the physical arrangement and chemical composition of their local environment. This can significantly impact bacterial distribution and nutrient transport and can play a dramatic role in shaping the rhizosphere around a developing plant. However, direct observation and quantitation of such behaviors is extremely difficult due to the opacity and complex porosity of the soil microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!