The chemokine receptor 4 (CXCR4) is overexpressed in several cancers and metastases and as such presents an enticing target for molecular imaging of metastases and metastatic potential of the primary tumor. CXCR4-based imaging agents could also be useful for diagnosis, staging, and therapeutic monitoring. Here we evaluated a positron-emitting monocyclam analog, (64)Cu-{N-[1,4,8,11-tetraazacyclotetradecanyl-1,4-phenylenebis(methylene)]-2-(aminomethyl)pyridine} ((64)Cu-AMD3465), in subcutaneous U87 brain tumors and U87 tumors stably expressing CXCR4 (U87-stb-CXCR4) and in colon tumors (HT-29) using dynamic and whole-body PET supported by ex vivo biodistribution studies. Both dynamic and whole-body PET/CT studies show specific accumulation of radioactivity in U87-stb-CXCR4 tumors, with the percentage injected dose per gram reaching a maximum of 102.70 ± 20.80 at 60 min and tumor-to-muscle ratios reaching a maximum of 362.56 ± 153.51 at 90 min after injection of the radiotracer. Similar specificity was also observed in the HT-29 colon tumor model. Treatment with AMD3465 inhibited uptake of radioactivity by the tumors in both models. Our results show that (64)Cu-AMD3465 is capable of detecting lesions in a CXCR4-dependent fashion, with high target selectivity, and may offer a scaffold for the synthesis of clinically translatable agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155288 | PMC |
http://dx.doi.org/10.2967/jnumed.110.085613 | DOI Listing |
EMBO J
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
Mitochondrial carrier homolog 2 (MTCH2) is a regulator of apoptosis, mitochondrial dynamics, and metabolism. Loss of MTCH2 results in mitochondrial fragmentation, an increase in whole-body energy utilization, and protection against diet-induced obesity. In this study, we used temporal metabolomics on HeLa cells to show that MTCH2 deletion results in a high ATP demand, an oxidized cellular environment, and elevated utilization of lipids, amino acids, and carbohydrates, accompanied by a decrease in several metabolites.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
RIKEN Center for Biosystems Dynamics Research, Suita-shi, Osaka, Japan.
Background: In aging societies, neurodegenerative diseases, such as Alzheimer's disease, are receiving attention. These diseases are primary targets for preemptive medicine, emphasizing the importance of early detection and preventive treatment before the onset of severe, treatment-resistant damages. However, there is a lack of comprehensive investigation of lesions and molecular targets in the entire organ, whereas spatial identification of early-stage lesions is potentially overlooked at the single-cell level.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Sport and Physical Education, University of Novi Sad, Lovcenska 16, Novi Sad, 21000, Serbia.
This study aimed to determine the effects of dynamic neuromuscular stabilization (DNS), whole-body vibration (WBV), and a combination of DNS and WBV (MIX) training modalities on postural stability (PS) in healthy recreation participants. The 179 participants (age 24.02 ± 2.
View Article and Find Full Text PDFSci Rep
December 2024
School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia.
Given the higher fall risk and the fatal sequelae of falls on stairs, it is worthwhile to investigate the mechanism of dynamic balance control in individuals with knee osteoarthritis during stair negotiation. Whole-body angular momentum ([Formula: see text]) is widely used as a surrogate to reflect dynamic balance and failure to constrain [Formula: see text] may increase the fall risk. This study aimed to compare the range of [Formula: see text] between people with and without knee osteoarthritis during stair ascent and descent.
View Article and Find Full Text PDFTrends Cancer
December 2024
National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China. Electronic address:
The tumor microenvironment (TME) is a complex, highly structured, and dynamic ecosystem that plays a pivotal role in the progression of both primary and metastatic tumors. Precise assessment of the dynamic spatiotemporal features of the TME is crucial for understanding cancer evolution and designing effective therapeutic strategies. Cancer is increasingly recognized as a systemic disease, influenced not only by the TME, but also by a multitude of systemic factors, including whole-body metabolism, gut microbiome, endocrine signaling, and circadian rhythm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!