Axons of histamine (HA)-containing neurons are known to project from the posterior hypothalamus to many areas of the brain, including the nucleus tractus solitarii (NTS), a central brain structure that plays an important role in regulating arterial pressure. However, the functional significance of NTS HA is still not fully established. In this study, we microinjected HA or 2-pyridylethylamine, a HA-receptor H(1)-specific agonist, into the NTS of urethane-anesthetized Wister rats to identify the potential functions of NTS HA on cardiovascular regulation. When HA or H(1)-receptor-specific agonist was bilaterally microinjected into the NTS, mean arterial pressure (MAP) and heart rate (HR) were significantly increased, whereas pretreatment with the H(1)-receptor-specific antagonist cetirizine into the NTS significantly inhibited the cardiovascular responses. The maximal responses of MAP and HR changes induced by HA or H(1)-receptor-specific agonist were dose dependent. We also confirmed gene expression of HA receptors in the NTS and that the expression level of H(1) mRNA was higher than that of the other subtypes. In addition, we found that H(1) receptors are mainly expressed in neurons of the NTS. These findings suggested that HA within the NTS may play a role in regulating cardiovascular homeostasis via activation of H(1) receptors expressed in the NTS neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00263.2011 | DOI Listing |
J Cereb Blood Flow Metab
January 2025
AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France.
In patients with acute brain injury (ABI), optimizing cerebral perfusion parameters relies on multimodal monitoring. This include data from systemic monitoring-mean arterial pressure (MAP), arterial carbon dioxide tension (PaCO), arterial oxygen saturation (SaO), hemoglobin levels (Hb), and temperature-as well as neurological monitoring-intracranial pressure (ICP), cerebral perfusion pressure (CPP), and transcranial Doppler (TCD) velocities. We hypothesized that these parameters alone were not sufficient to assess the risk of cerebral ischemia.
View Article and Find Full Text PDFClin Physiol Funct Imaging
January 2025
Faculty of Medicine, Department Radiology, Gazi University, Ankara, Turkey.
Background: Optimizing hamstring exercises is crucial for injury prevention and performance. This study explored the effects of blood flow restriction (BFR) during Nordic hamstring exercises (NHE) on hamstring muscle activation and vascular function.
Methods: A randomized, single-blind study included 14 healthy, physically active males (mean age: 27.
Ren Fail
December 2025
Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong Province, China.
Background: Acute kidney injury (AKI) is a common complication in critically ill patients, with approximately 5% requiring continuous renal replacement therapy (CRRT). This study investigated the relationship between mean arterial pressure (MAP) and 28- and 90-day mortality in critically ill AKI patients treated with CRRT.
Methods: This secondary analysis of a bicenter, retrospective, observational study included patients with AKI who were treated with CRRT from January 2009 to September 2016.
J Transl Med
January 2025
Fourth Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang, 310006, Hangzhou, China.
Introduction: Cardiac arrest (CA), characterized by its heterogeneity, poses challenges in patient management. This study aimed to identify clinical subphenotypes in CA patients to aid in patient classification, prognosis assessment, and treatment decision-making.
Methods: For this study, comprehensive data were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) 2.
Curr Diab Rep
January 2025
Facultad de Farmacia y Bioquímica, Laboratorio de Lípidos y Aterosclerosis, Universidad de Buenos Aires, Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC-UBA), Buenos Aires, Argentina.
Purpose Of Review: This article explores the cardiovascular effects of sodium-glucose cotransporter 2 inhibitors (SGLT2i) in patients with type 2 diabetes mellitus (T2DM), with a particular focus on their impact on lipid profiles. As evidence grows of the cardiovascular benefits of SGLT2i beyond glucose control, it is essential to better understand their effects on lipoproteins and their impact on cardiovascular disease.
Recent Findings: SGLT2i have shown significant cardiovascular benefits in patients with type 2 diabetes mellitus, beyond their role in lowering blood glucose.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!