Many plant host factors are known to interact with viral proteins during pathogenesis, but how a plant virus induces a specific disease symptom still needs further research. A lily strain of Cucumber mosaic virus (CMV-HL) can induce discrete necrotic spots on infected Arabidopsis (Arabidopsis thaliana) plants; other CMV strains can induce similar spots, but they are not as distinct as those induced by CMV-HL. The CMV 2b protein (2b), a known RNA-silencing suppressor, is involved in viral movement and symptom induction. Using in situ proximity ligation assay immunostaining and the protoplast assays, we report here that CMV 2b interacts directly with Catalase3 (CAT3) in infected tissues, a key enzyme in the breakdown of toxic hydrogen peroxide. Interestingly, CAT3, normally localized in the cytoplasm (glyoxysome), was recruited to the nucleus by an interaction between 2b and CAT3. Although overexpression of CAT3 in transgenic plants decreased the accumulation of CMV and delayed viral symptom development to some extent, 2b seems to neutralize the cellular catalase contributing to the host defense response, thus favoring viral infection. Our results thus provide evidence that, in addition to altering the type of symptom by disturbing microRNA pathways, 2b can directly bind to a host factor that is important in scavenging cellular hydrogen peroxide and thus interfere specifically with that host factor, leading to the induction of a specific necrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149961PMC
http://dx.doi.org/10.1104/pp.111.180042DOI Listing

Publication Analysis

Top Keywords

rna-silencing suppressor
8
hydrogen peroxide
8
host factor
8
viral
5
host
5
virus-induced necrosis
4
necrosis consequence
4
consequence direct
4
direct protein-protein
4
protein-protein interaction
4

Similar Publications

NSUN2-Mediated R-loop Stabilization as a Key Driver of Bladder Cancer Progression and Cisplatin Sensitivity.

Cancer Lett

December 2024

Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China. Electronic address:

R-loops are critical structures that play pivotal roles in regulating genomic stability and modulating gene expression. This study investigates the interactions between the 5-methylcytosine (mC) methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) and R-loops in the transcriptional dynamics and damage repair process of bladder cancer (BCa) cells. We observed markedly elevated levels of R-loops in BCa cells relative to normal urothelial cells.

View Article and Find Full Text PDF

Plant viruses have evolved different viral suppressors of RNA silencing (VSRs) to counteract RNA silencing which is a small RNA-mediated sequence-specific RNA degradation mechanism. Previous studies have already shown that the coat protein (CP) of cucumber mosaic virus (CMV) reduced RNA silencing suppression (RSS) activity of the VSR of CMV, the 2b protein. To demonstrate the universality of this CP-VSR interference, our study included three different viruses: CMV and peanut stunt virus (PSV) from the Bromoviridae, and plum pox virus (PPV) from the Potyviridae family.

View Article and Find Full Text PDF

SUZ12-Increased NRF2 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Apoptosis, Inflammation, and Ferroptosis.

Cardiovasc Toxicol

December 2024

Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China.

Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-sensitive transcriptional factor that enables cells to resist oxidant responses, ferroptosis and inflammation. Here, we set out to probe the effects of NRF2 on cardiomyocyte injury under acute myocardial infarction (AMI) condition and its potential mechanism. Human cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) to induce cell injury.

View Article and Find Full Text PDF

Background: The tumor suppressor wild-type p53 is known for its role in inducing apoptosis in tumor cells. This study investigated the relationship between wild-type p53 and protein phosphatase 1 (PP1) and caspase in promoting apoptosis of breast cancer cells.

Methods: Human breast cancer cell lines MCF-7 and MDA-MB-231 obtained from the American Type Culture Collection were used in this study.

View Article and Find Full Text PDF

USP44 regulates HEXIM1 stability to inhibit tumorigenesis and metastasis of oral squamous cell carcinoma.

Biol Direct

December 2024

Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, 1 Longhu Zhonghuan Road, Jinshui District, Zhengzhou, Henan, 450001, China.

Oral squamous cell carcinoma (OSCC) is the most frequent type of oral malignancy with high metastasis and poor prognosis. The deubiquitinating enzyme Ubiquitin Specific Peptidase 44 (USP44) regulates the mitotic checkpoint, and its deficiency leads to aneuploidy and increases tumor incidence. However, the role of USP44 in OSCC is not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!