Neisseria meningitidis is one of the main agents of bacterial meningitis, causing substantial morbidity and mortality worldwide. However, most of the time N. meningitidis is carried as a commensal not associated with invasive disease. The genomic basis of the difference between disease-associated and carried isolates of N. meningitidis may provide critical insight into mechanisms of virulence, yet it has remained elusive. Here, we have taken a comparative genomics approach to interrogate the difference between disease-associated and carried isolates of N. meningitidis at the level of individual nucleotide variations (i.e., single nucleotide polymorphisms [SNPs]). We aligned complete genome sequences of 8 disease-associated and 4 carried isolates of N. meningitidis to search for SNPs that show mutually exclusive patterns of variation between the two groups. We found 63 SNPs that distinguish the 8 disease-associated genomes from the 4 carried genomes of N. meningitidis, which is far more than can be expected by chance alone given the level of nucleotide variation among the genomes. The putative list of SNPs that discriminate between disease-associated and carriage genomes may be expected to change with increased sampling or changes in the identities of the isolates being compared. Nevertheless, we show that these discriminating SNPs are more likely to reflect phenotypic differences than shared evolutionary history. Discriminating SNPs were mapped to genes, and the functions of the genes were evaluated for possible connections to virulence mechanisms. A number of overrepresented functional categories related to virulence were uncovered among SNP-associated genes, including genes related to the category "symbiosis, encompassing mutualism through parasitism."

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133314PMC
http://dx.doi.org/10.1128/JB.01198-10DOI Listing

Publication Analysis

Top Keywords

disease-associated carried
16
carried isolates
12
isolates meningitidis
12
discriminate disease-associated
8
carried genomes
8
neisseria meningitidis
8
difference disease-associated
8
discriminating snps
8
meningitidis
7
disease-associated
6

Similar Publications

Diagnostic and prognostic implications of family history of fibrotic interstitial lung diseases.

Respir Res

December 2024

Interstitial Lung Disease Unit, Respiratory Department, Bellvitge University Hospital, University of Barcelona, L'Hospitalet de Llobregat, Spain.

Background: Patients with familial fibrotic interstitial lung disease (ILD) experience worse survival than patients with sporadic disease. Current guidelines do not consider family aggregation or genetic information in the diagnostic algorithm for idiopathic pulmonary fibrosis or other fibrotic ILDs. Better characterizing familial cases could help in diagnostic and treatment decision-making.

View Article and Find Full Text PDF

Obstructive sleep apnea (OSA) is often a lifestyle disease associated with obesity, which is rapidly evolving as a major health concern with diverse multisystemic implications. To prevent and mitigate its adverse effects and reduce its burden on society, its aetiopathogeneses must be precisely understood. Numerous studies focusing on the range of diverse anatomic, functional, and lifestyle factors have already been carried out to determine the possible contributory roles of these factors in OSA.

View Article and Find Full Text PDF

Inositol 1,4,5-Trisphosphate Receptor 1 Gain-of-Function Increases the Risk for Cardiac Arrhythmias in Mice and Humans.

Circulation

December 2024

Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.).

Article Synopsis
  • * Researchers identified 21 human ITPR1 GOF variants and created a mouse model with one of these variants (ITPR1-W1457G), which was found to be prone to stress-induced ventricular arrhythmias.
  • * Both mouse models and human data suggest that ITPR1 GOF variants increase Ca handling abnormalities and arrhythmia risk, with 7 rare ITPR1 variants in a human database showing similar GOF behavior linked to cardiac
View Article and Find Full Text PDF

Brain-derived and in vitro-seeded alpha-synuclein fibrils exhibit distinct biophysical profiles.

Elife

November 2024

Nuffield Department of Clinical Neurosciences, Oxford Parkinson's Disease Center, University of Oxford, Oxford, United Kingdom.

The alpha-synuclein (αSyn) seeding amplification assay (SAA) that allows the generation of disease-specific in vitro seeded fibrils (SAA fibrils) is used as a research tool to study the connection between the structure of αSyn fibrils, cellular seeding/spreading, and the clinicopathological manifestations of different synucleinopathies. However, structural differences between human brain-derived and SAA αSyn fibrils have been recently highlighted. Here, we characterize the biophysical properties of the human brain-derived αSyn fibrils from the brains of patients with Parkinson's disease with and without dementia (PD, PDD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and compare them to the 'model' SAA fibrils.

View Article and Find Full Text PDF

Introduction: Endometriosis is a chronic gynecological disease associated with chronic debilitating pain, poor mental health and quality of life. The objective of this paper is to evaluate the effectiveness of psychological interventions aimed at improving the pain, quality of life and mental health of women with endometriosis.

Methods: A systematic review (SR) of the literature with meta-analysis (MA) was carried out.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!