Tetrahydrobiopterin attenuates superoxide-induced reduction in nitric oxide.

Front Biosci (Schol Ed)

Cardiovascular Research Institute and Department of Systems Biology and Translational Medicine, Texas A and M Health Science Center, Temple, TX 76504, USA.

Published: June 2011

NADPH oxidase, a source of superoxide anion (·O2(-)), can be stimulated by oxidized low-density lipoprotein (OxLDL). We examined whether tetrahydrobiopterin (BH4) could reduce OxLDL-induced ·O2(-) production by NADPH oxidase, increasing nitric oxide (NO) synthesis. Endothelial cells incubated with OxLDL produced more ·O2(-) (35-67%) than untreated cells, with the highest increase 1 hour after OxLDL addition. The elevated ·O2(-) production correlated with the translocation of the p47phox subunit of NADPH oxidase from the cytosol to the membrane. Cells exhibited a marked decrease in both BH4 (83 per cent) and NO (54 per cent) in the same hour following exposure to OxLDL. An NADPH oxidase inhibitor, apocynin, or antioxidant, N-acetyl-L-cysteine, substantially attenuated the reduction in both BH4 and NO. The ·O2(-) production was increased when cells were pretreated with an inhibitor of BH4 synthesis and decreased following pretreatment with a BH4 precursor, suggesting that NADPH oxidase-induced imbalance of endothelial NO and ·O2(-) production can be modulated by BH4 concentrations. BH4 may be critical in combating oxidative stress, restoring proper redox state, and reducing risk for cardiovascular disease including atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.2741/s224DOI Listing

Publication Analysis

Top Keywords

nadph oxidase
16
·o2- production
16
nitric oxide
8
bh4
7
·o2-
6
nadph
5
tetrahydrobiopterin attenuates
4
attenuates superoxide-induced
4
superoxide-induced reduction
4
reduction nitric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!