Although osteoclasts (OCs) differentiate under the control of RANK/RANKL/OPG system, a number of inflammatory cytokines can contribute to increase osteoclastogenesis in diseases associated with bone loss. Recently, different studies indicate that TRAIL is implicated in modulating osteoclastogenesis. Here, we investigated the effect of TRAIL on OC formation in physiological and pathological conditions with bone involvement utilizing osteoclastogenesis in vitro models represented by peripheral blood mononuclear cells (PBMCs) from healthy donors and patients affected by multiple myeloma or periodontal disease. We demonstrated that in PBMCs from healthy donors TRAIL can directly induce OC formation in the absence of RANKL, while exert an inhibitory effect when added concomitantly to RANKL. In PBMCs from the patients, in which media the levels of TRAIL, RANKL and OPG are elevated, the neutralization of TRAIL partially inhibits the OC formation, and this effect was reversed by RANKL addition. Finally, we detect high TRAIL levels in the sera from the patients. In conclusion, our results indicate that TRAIL could exert a different role in modulating OC differentiation in physiological and pathological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2741/e318 | DOI Listing |
Sci Rep
January 2025
Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
Neurons derived from induced pluripotent stem cells (h-iPSC-Ns) provide an invaluable model for studying the physiological aspects of human neuronal development under healthy and pathological conditions. However, multiple studies have demonstrated that h-iPSC-Ns exhibit a high degree of functional and epigenetic diversity. Due to the imprecise characterization and significant variation among the currently available maturation protocols, it is essential to establish a set of criteria to standardize models and accurately characterize and define the developmental properties of human neurons derived from iPSCs.
View Article and Find Full Text PDFChembiochem
January 2025
Yonsei University, Deparment of Pharmacy, 85 Songdogwahak-ro, Yeonsu-gu, Yonsei University, Veritas Hall D411, 21983, Incheon, KOREA, REPUBLIC OF.
Alzheimer's disease (AD) is a progressive neurodegenerative condition characterized by the deposition of amyloid-β (Aβ) peptides, which aggregate into toxic structures such as oligomers, fibrils, and plaques. The presence of these Aβ aggregates in the brain plays a crucial role in the pathophysiology, leading to synaptic dysfunction and cognitive impairment. Understanding how physiological factors affect Aβ aggregation is essential, and therefore, exploring their influence in vitro will likely provide insights into their role in AD pathology.
View Article and Find Full Text PDFACS Sens
January 2025
School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
The amino acid l-arginine (Arg) plays important roles in multiple metabolic and physiological processes, and changes in its concentration have been implicated in pathological processes. While it is important to measure Arg levels in biological systems directly and in real-time, existing Arg sensors respond to l-ornithine or l-lysine. Here we report ArgS1, a new Arg sensor.
View Article and Find Full Text PDFEur J Cell Biol
January 2025
The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, Saint Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA. Electronic address:
Since the development of the three-dimensional (3D) "mini-gut" culture system, adult stem cell-derived organoid technology has rapidly advanced, providing in vitro models that replicate key cellular, molecular, and physiological properties of multiple organs. The 3D intestinal organoid system has resolved many long-standing challenges associated with immortalized or cancer cell cultures, offering unparalleled capabilities for modeling gastrointestinal development and diseases. However, significant limitations remain, including restricted accessibility to the epithelial apical surface for studying host-microbe interactions, interruptions in modeling chronic gastrointestinal diseases due to frequent passaging and dissociation, and the absence of mechanical cues such as peristalsis and luminal flow, which are critical for organ development and function.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt. Electronic address:
Alzheimer's disease (AD) is popularly believed to be triggered by the aggregation of amyloid beta 1-42 (Aβ - 42) peptides, eventually leading to neurodegeneration. Our study delves into the influential role played by Green Iron Oxide Nanoparticles (GIONP). GIONP are typically synthesized using a green chemistry approach, imposing curcumin as a biocompatible reducing and capping agent, leveraging its inherent antioxidant, anti-inflammatory, and neuroprotective attributes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!