Small-angle X-ray diffraction was used to determine the topography of (-)-delta 8-tetrahydrocannabinol in partially hydrated dimyristoylphosphatidylcholine bilayers. Electron density profiles of lipid bilayers in the presence and absence of the cannabinoid were calculated using Fourier transform. Step-function equivalent profiles were then constructed to obtain the absolute electron density scale. We have compared the electron density profiles of the above preparations to determine the location of the drug molecule in the bilayer. By using (-)-5'-iodo-delta 8-tetrahydrocannabinol in parallel experiments, we were also able to locate the iodine atom in the bilayer and deduce the conformation of the cannabinoid side alkyl chain. All comparisons were made between different preparations having the same mesomorphic form and total period repeat distance. To achieve this, we have carried out X-ray diffraction experiments at various temperatures to cover the different mesomorphic phases and combined our data with the corresponding results from differential scanning calorimetry. Based on the results of this work and previous data on the orientation of the cannabinoid in model membranes, we concluded that the phenolic hydroxy group of the drug molecule exists near the carbonyl groups of DMPC and that the average position of the iodine atom is approx. 5.5 A from the center (terminal methyl region) of the DMPC bilayer. This requires the cannabinoid side-chain to assume an orientation parallel to the bilayer chains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2736(90)90363-sDOI Listing

Publication Analysis

Top Keywords

x-ray diffraction
12
electron density
12
model membranes
8
density profiles
8
drug molecule
8
iodine atom
8
study topography
4
topography cannabinoids
4
cannabinoids model
4
membranes x-ray
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!