Context: Epothilones, belonging to the family of microtubule stabilizing agents, have shown prolonged remissions and improved survival in various types of refractory, treatment-resistant cancer. Ixabepilone (BMS-247550) is the main representative of these compounds. Peripheral neuropathy is a significant toxicity of epothilones, eventually resulting in dose modification and changes in the treatment plan.

Objectives: This review critically looks at the pathogenesis, incidence, risk factors, characteristics, and management of epothilone-induced peripheral neuropathy (EIPN). We also highlight areas of future research to pursue.

Methods: References were identified by searches of PubMed from 2000 until December 2010 with related terms.

Results: The mechanism underlying EIPN remains rather unclear. Damage to the ganglion soma cells and peripheral axons through disruption of microtubules of the mitotic spindle and by interference with the axonal transport in the affected neurons may significantly contribute to the pathogenesis of EIPN. As a result, epothilones primarily produce an axonal, dose-dependent, sensory distal peripheral neuropathy, which is reversible in most cases on discontinuation of treatment. The incidence of EIPN is mainly related to risk factors, including cumulative dose and probably pre-existing neuropathy. To date, apart from the use of dose reduction and schedule change algorithm, there is no effective treatment with neuroprotective agents for EIPN.

Conclusion: EIPN remains a very challenging area in the field of toxic neuropathies. As such, there is a need for further preclinical and prospective clinical studies to elucidate the pathogenesis of EIPN and provide further robust evidence on its incidence, course, and reversibility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpainsymman.2011.02.022DOI Listing

Publication Analysis

Top Keywords

peripheral neuropathy
16
epothilone-induced peripheral
8
risk factors
8
eipn remains
8
pathogenesis eipn
8
eipn
6
neuropathy
5
neuropathy review
4
review current
4
current knowledge
4

Similar Publications

Background: Repeat neurological assessment is standard in cases of severe acute brain injury. However, conventional measures rely on overt behavior. Unfortunately, behavioral responses may be difficult or impossible for some patients.

View Article and Find Full Text PDF

Clinical and imaging spectrum of non-congenital dominant ACTN2 myopathy.

J Neurol

January 2025

Department of Neurology and Neurosciences, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain.

Background: Alpha-actinin-2, a protein with high expression in cardiac and skeletal muscle, is located in the Z-disc and plays a key role in sarcomere stability. Mutations in ACTN2 have been associated with both hypertrophic and dilated cardiomyopathy and, more recently, with skeletal myopathy.

Methods: Genetic, clinical, and muscle imaging data were collected from 37 patients with an autosomal dominant ACTN2 myopathy belonging to 11 families from Spain and Belgium.

View Article and Find Full Text PDF

Background And Objective: Neuronal intranuclear inclusion disease (NIID) is a multifaceted disorder impacting both the central and peripheral nervous systems. This study aims to investigate the clinical and electrophysiological characteristics of peripheral neuropathy in patients with NIID.

Methods: In this cross-sectional study, patients diagnosed with NIID were prospectively recruited from multiple centers across China between October 2017 and May 2024.

View Article and Find Full Text PDF

Interleukin 6 (IL6) is an inflammatory biomarker linked to central and peripheral nervous system diseases. This study combined bioinformatics and statistical meta-analysis to explore potential associations between IL6 gene variants (rs1800795, rs1800796, and rs1800797) and neurological disorders (NDs) and brain cancer. The meta-analysis was conducted on substantial case-control datasets and revealed a significant correlation between IL6 SNPs (rs1800795 and rs1800796) with overall NDs (p-value < 0.

View Article and Find Full Text PDF

Piperine is an amide alkaloid isolated from the black pepper plant. This study examined the pain‑relieving activity of piperine against paclitaxel (PTX)‑induced neuropathy. Male mice were divided into 6 groups: Sham‑operated group (remained intact), PTX group (PTX‑treated mice receiving normal saline), PTX+ piperine 10, 25, and 50 mg/kg groups (PTX‑treated mice receiving piperine) and positive control group (PTX‑treated mice receiving imipramine 10 mg/kg).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!