A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. | LitMetric

The influence of substrate creep on mesenchymal stem cell behaviour and phenotype.

Biomaterials

Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, Building 75-Cnr of College and Cooper Road, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.

Published: September 2011

Human mesenchymal stem cells (hMSCs) are capable of probing and responding to the mechanical properties of their substrate. Although most biological and synthetic matrices are viscoelastic materials, previous studies have primarily focused upon substrate compressive modulus (rigidity), neglecting the relative contributions that the storage (elastic) and loss (viscous) moduli make to the summed compressive modulus. In this study we aimed to isolate and identify the effects of the viscous component of a substrate on hMSC behaviour. Using a polyacrlyamide gel system with constant compressive modulus and varying loss modulus we determined that changes to substrate loss modulus substantially affected hMSC morphology, proliferation and differentiation potential. In addition, we showed that the effect of substrate loss modulus on hMSC behaviour is due to a reduction in both passive and actively generated isometric cytoskeletal tension caused by the inherent creep of substrates with a high loss modulus. These findings highlight substrate creep, or more explicitly substrate loss modulus, as an important mechanical property of a biomaterial system that can be tailored to encourage the growth and differentiation of specific cell types.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2011.04.003DOI Listing

Publication Analysis

Top Keywords

loss modulus
20
compressive modulus
12
substrate loss
12
substrate creep
8
mesenchymal stem
8
modulus
8
hmsc behaviour
8
modulus hmsc
8
substrate
7
loss
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!