Is there a role for young hippocampal neurons in adaptation to stress?

Behav Brain Res

Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032, USA.

Published: February 2012

The hippocampus has been implicated in many cognitive and emotional behaviors and in the physiology of the stress response. Within the hippocampus, the dentate gyrus has been implicated in the detection of novelty. The dentate is also a major target for stress hormones and modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. Whether these functions of the dentate integrate or segregate remains unknown, as most investigations of its role in stress and learning are separate. Since the exciting discovery of adult neurogenesis in the dentate gyrus, adult-born neurons have been implicated in both novelty detection and the stress response. In this perspective we will discuss the literature that implicates the hippocampus, and potentially, adult-born neurons in these two functions. We will attempt to reconcile the seemingly contradictory behavioral results for the function of adult-born neurons. Finally, we will speculate that a key function of adult-born neurons within hippocampal function may be to modulate the stress response and perhaps assign stress salience to the sensory context.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3529657PMC
http://dx.doi.org/10.1016/j.bbr.2011.05.007DOI Listing

Publication Analysis

Top Keywords

adult-born neurons
16
stress response
12
dentate gyrus
8
function adult-born
8
stress
7
neurons
5
role young
4
young hippocampal
4
hippocampal neurons
4
neurons adaptation
4

Similar Publications

Adult neurogenesis has most often been studied in the hippocampus and subventricular zone-olfactory bulb, where newborn neurons contribute to a variety of behaviors. A handful of studies have also investigated adult neurogenesis in other brain regions, but relatively little is known about the properties of neurons added to non-canonical areas. One such region is the striatum.

View Article and Find Full Text PDF

Regulation of dentate gyrus pattern separation by hilus ectopic granule cells.

Cogn Neurodyn

December 2025

State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, #10 Xitucheng Road, Beijing, 100876 People's Republic of China.

The dentate gyrus (DG) in hippocampus is reported to perform pattern separation, converting similar inputs into different outputs and thus avoiding memory interference. Previous studies have found that human and mice with epilepsy have significant pattern separation defects and a portion of adult-born granule cells (abGCs) migrate abnormally into the hilus, forming hilus ectopic granule cells (HEGCs). For the lack of relevant pathophysiological experiments, how HEGCs affect pattern separation remains unclear.

View Article and Find Full Text PDF

Absence of the structural protein, dystrophin, results in the neuromuscular disorder Duchenne Muscular Dystrophy (DMD). In addition to progressive skeletal muscle dysfunction, this multisystemic disorder can also result in cognitive deficits and behavioural changes that are likely to be consequences of dystrophin loss from central neurons and astrocytes. Dystrophin-deficient mdx mice exhibit decreases in grey matter volume in the hippocampus, the brain region that encodes and consolidates memories, and this is exacerbated with ageing.

View Article and Find Full Text PDF

Introduction: Neural stem cells from the subventricular zone (SVZ) neurogenic niche provide neurons that integrate in the olfactory bulb circuitry. However, in response to cortical injuries, the neurogenic activity of the SVZ is significantly altered, leading to increased number of neuroblasts with a modified migration pattern that leads cells towards the site of injury. Despite the increased neurogenesis and migration, many newly generated neurons fail to survive or functionally integrate into the cortical circuitry.

View Article and Find Full Text PDF

Adult brain neurogenesis does not account for behavioral differences between solitary and social bees.

J Insect Physiol

December 2024

Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France. Electronic address:

Article Synopsis
  • The study examines how group living in social insects affects brain plasticity and behavior, focusing specifically on differences between solitary and eusocial bees.
  • It highlights the concept of adult neurogenesis, where new neurons are created and integrated into the brain, as a possible factor influencing behavioral flexibility.
  • Contrary to predictions, the research found that the solitary bee Osmia bicornis does not generate new brain cells in adulthood, challenging the assumption that solitary species maintain higher levels of neurogenesis compared to social species like Apis mellifera.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!