TcHMA4 (GenBank no. AJ567384), a Cd/Zn transporting ATPase of the P(1B)-type (=CPx-type) was isolated and purified from roots of the Cd/Zn hyperaccumulator Thlaspi caerulescens. Optimisation of the purification protocol, based on binding of the natural C-terminal His-tag of the protein to a Ni-IDA metal affinity column, yielded pure, active TcHMA4 in quantities sufficient for its biochemical and biophysical characterisation with various techniques. TcHMA4 showed activity with Cu(2+), Zn(2+) and Cd(2+) under various concentrations (tested from 30nM to 10μM), and all three metal ions activated the ATPase at a concentration of 0.3μM. Notably, the enzyme worked best at rather high temperatures, with an activity optimum at 42°C. Arrhenius plots yielded interesting differences in activation energy. In the presence of zinc it remained constant (E(A)=38kJ⋅mol(-1)) over the whole concentration range while it increased from 17 to 42kJ⋅mol(-1) with rising copper concentration and decreased from 39 to 23kJ⋅mol(-1) with rising cadmium concentration. According to EXAFS the TcHMA4 appeared to bind Cd(2+) mainly by thiolate sulphur from cysteine, and not by imidazole nitrogen from histidine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2011.05.010DOI Listing

Publication Analysis

Top Keywords

biochemical biophysical
8
biophysical characterisation
8
cd/zn transporting
8
transporting atpase
8
thlaspi caerulescens
8
characterisation yields
4
yields insights
4
insights mechanism
4
mechanism cd/zn
4
atpase purified
4

Similar Publications

Blood clots are complex structures composed of blood cells and proteins held together by the structural framework provided by an insoluble fibrin network. Factor (F)XIII is a protransglutaminase essential for stabilizing the fibrin network. Activated FXIII(a) introduces novel covalent crosslinks within and between fibrin and other plasma and cellular proteins, and thereby promotes fibrin biochemical and mechanical integrity.

View Article and Find Full Text PDF

Purifying membrane proteins has been the limiting step for studying their structure and function. The challenges of the process include the low expression levels in heterologous systems and the requirement for their biochemical stabilization in solution. The human voltage-gated proton channel (hH1) is a good example of that: the published protocols to express and purify hH1 produce low protein quantities at high costs, which is an issue for systematically characterizing its structure and function.

View Article and Find Full Text PDF

Functional nanoplatform for modulating cellular forces to enhance antitumor immunity via mechanotransduction.

J Control Release

January 2025

Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China. Electronic address:

Immune cells are sensitive to the perception of mechanical stimuli in the tumor microenvironment. Changes in biophysical cues within tumor tissue can alter the force-sensing mechanisms experienced by cells. Mechanical stimuli within the extracellular matrix are transformed into biochemical signals through mechanotransduction.

View Article and Find Full Text PDF

Ligand interaction landscape of transcription factors and essential enzymes in E. coli.

Cell

January 2025

Program in Bioinformatics, Boston University, Boston, MA 02215, USA; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Center for Network Systems Biology, Boston University, Boston, MA 02218, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA; Department of Chemical Physiology and Biochemistry, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. Electronic address:

Knowledge of protein-metabolite interactions can enhance mechanistic understanding and chemical probing of biochemical processes, but the discovery of endogenous ligands remains challenging. Here, we combined rapid affinity purification with precision mass spectrometry and high-resolution molecular docking to precisely map the physical associations of 296 chemically diverse small-molecule metabolite ligands with 69 distinct essential enzymes and 45 transcription factors in the gram-negative bacterium Escherichia coli. We then conducted systematic metabolic pathway integration, pan-microbial evolutionary projections, and independent in-depth biophysical characterization experiments to define the functional significance of ligand interfaces.

View Article and Find Full Text PDF

: Peripheral artery disease (PAD) is a prevalent vascular condition characterized by arterial narrowing, which impairs blood flow and manifests as intermittent claudication, a pain or cramping sensation induced by physical activity or ambulation. Walking distance is a crucial clinical indicator of peripheral artery disease, and it correlates with the disease severity and risk of mortality. It reflects the severity of the disease, with reduced mobility indicating an increased risk of morbidity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!