Trichomonosis is a common sexually transmitted infectious disease linked to reproductive health complications. Recently, the benzimidazole nucleus has emerged as a promising scaffold to develop new trichomonicidal agents. Despite the fact that large amounts of experimental data have been accumulated over the past eight years, no quantitative studies have yet been reported on this class of compounds. In our effort to develop new antiparasitic benzimidazole derivatives, we report in this paper CoMFA and CoMSIA studies with an initial set of 70 benzimidazole derivatives with trichomonicidal activity. Four CoMFA models and eight CoMSIA models were generated; ten of these models had values of r(2) > 0.6 and q(2) > 0.5. The best CoMFA model had r(2) = 0.936 and q(2) = 0.634, and the best CoMSIA model had r(2) = 0.858 and q(2) = 0.642. These models were generated by using two conformer selection methodologies (minimum energy conformations and 3D similarity), and three charge types (Mulliken, Gasteiger-Hükel and electrostatic potential atomic charges). The putative active tautomers of 1H-benzimidazole derivatives were selected using 3D-QSAR calculations. All models were validated via an external test set with 13 molecules. The best models satisfied additional validation criteria. The contour maps generated show the most important features that a benzimidazole derivative should have for trichomonicidal activity; they also, suggest that substituents at the 2- and 6-positions are important in the generation of derivatives with strong activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2011.05.016DOI Listing

Publication Analysis

Top Keywords

benzimidazole derivatives
12
trichomonicidal activity
12
comparative molecular
8
derivatives trichomonicidal
8
models generated
8
models
6
benzimidazole
5
derivatives
5
molecular field
4
field analysis
4

Similar Publications

Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy.

View Article and Find Full Text PDF

Benzimidazole Derivatives in Breast Cancer: Target-Specific Therapeutic Breakthroughs.

Curr Top Med Chem

January 2025

Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.

Despite ongoing advancements in drug design and developments, breast cancer remains a serious and devastating disease and is ranked as the second most common illness in women. Breast cancer rates have increased significantly during the last 40 years. This necessitates the development of novel treatment techniques.

View Article and Find Full Text PDF

Heterocyclic compounds are increasingly used in medicinal chemistry because they are the main components of many biological processes and materials. Benzimidazole remains the core center of the heterocyclic chemical group, with essential traits such as six-five-member connected rings and two nitrogen atoms at the 1,3 position in a six-membered benzene and five-membered imidazole- fused ring system. Molecules with benzimidazole derivatives serve important functions as therapeutic agents and have shown excellent results in clinical and biological research.

View Article and Find Full Text PDF

Researchers are actively looking for novel anticancer medications because cancer is one of the leading causes of mortality worldwide. A fascinating area of study in medicinal chemistry is the screening of antioxidants for novel anticancer medicines, as antioxidants have lately been used as therapeutic candidates to combat a variety of ailments in aerobic species. Additionally, pyrazole-based heterocycle synthesis is a productive approach to the drug development process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!