Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Early elementary schooling in 2nd and 3rd grades (ages 7-9) is an important period for the acquisition and mastery of basic mathematical skills. Yet, we know very little about neurodevelopmental changes that might occur over a year of schooling. Here we examine behavioral and neurodevelopmental changes underlying arithmetic problem solving in a well-matched group of 2nd (n = 45) and 3rd (n = 45) grade children. Although 2nd and 3rd graders did not differ on IQ or grade- and age-normed measures of math, reading and working memory, 3rd graders had higher raw math scores (effect sizes = 1.46-1.49) and were more accurate than 2nd graders in an fMRI task involving verification of simple and complex two-operand addition problems (effect size = 0.43). In both 2nd and 3rd graders, arithmetic complexity was associated with increased responses in right inferior frontal sulcus and anterior insula, regions implicated in domain-general cognitive control, and in left intraparietal sulcus (IPS) and superior parietal lobule (SPL) regions important for numerical and arithmetic processing. Compared to 2nd graders, 3rd graders showed greater activity in dorsal stream parietal areas right SPL, IPS and angular gyrus (AG) as well as ventral visual stream areas bilateral lingual gyrus (LG), right lateral occipital cortex (LOC) and right parahippocampal gyrus (PHG). Significant differences were also observed in the prefrontal cortex (PFC), with 3rd graders showing greater activation in left dorsal lateral PFC (dlPFC) and greater deactivation in the ventral medial PFC (vmPFC). Third graders also showed greater functional connectivity between the left dlPFC and multiple posterior brain areas, with larger differences in dorsal stream parietal areas SPL and AG, compared to ventral stream visual areas LG, LOC and PHG. No such between-grade differences were observed in functional connectivity between the vmPFC and posterior brain regions. These results suggest that even the narrow one-year interval spanning grades 2 and 3 is characterized by significant arithmetic task-related changes in brain response and connectivity, and argue that pooling data across wide age ranges and grades can miss important neurodevelopmental changes. Our findings have important implications for understanding brain mechanisms mediating early maturation of mathematical skills and, more generally, for educational neuroscience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165021 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2011.05.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!