AI Article Synopsis

  • Prolyl oligopeptidase (POP) is an enzyme that plays a role in cell growth regulation and is present in high amounts in the brain.
  • Treatment with the selective POP inhibitor SUAM-14746 effectively suppresses the growth of NB-1 neuroblastoma cells in a dose-dependent manner without causing cell death.
  • The growth inhibition is linked to cell cycle changes, including G(0)/G(1) arrest and altered levels of key regulatory proteins, suggesting that POP is involved in controlling the cell cycle.

Article Abstract

Prolyl oligopeptidase (POP) is a post-proline cleaving enzyme, which is widely distributed in various organs, with high levels in the brain. In this study, we investigated the effects of a selective POP inhibitor, 3-({4-[2-(E)-styrylphenoxy]butanoyl}-l-4-hydroxyprolyl)-thiazolidine (SUAM-14746), on the growth of NB-1 human neuroblastoma cells. SUAM-14746 treatment for 24-72 h suppresses the growth of NB-1 cells without cell death in a dose-dependent manner (10-60 μM). Similar suppressive effects were observed with another POP inhibitor benzyloxycarbonyl-thioprolyl-thioprolinal. The SUAM-14746-induced growth inhibition in NB-1 cells was associated with pronounced G(0)/G(1) arrest and reduced levels of phosphorylated retinoblastoma protein (pRb), cyclin E, and cyclin dependent kinase (CDK) 2, and increased levels of the CDK inhibitor p27(kip1) and the tumor suppressor p53. SUAM-14746 also induced transient inhibition of S and G(2)/M phase progression, which was correlated with retardation of the decrease in the levels of cyclins A and B. Moreover, RNAi-mediated knockdown of POP also led to inhibition of NB-1 cell growth and the effect was accompanied by G(0)/G(1) arrest. These results indicate that POP is a part of the machinery that controls the cell cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2011.05.066DOI Listing

Publication Analysis

Top Keywords

prolyl oligopeptidase
8
cell cycle
8
human neuroblastoma
8
pop inhibitor
8
growth nb-1
8
nb-1 cells
8
inhibition nb-1
8
g0/g1 arrest
8
cell
5
pop
5

Similar Publications

Background: Elucidating the intricacies of the sugarcane genome is essential for breeding superior cultivars. This economically important crop originates from hybridizations of highly polyploid Saccharum species. However, the large size (10 Gb), high degree of polyploidy, and aneuploidy of the sugarcane genome pose significant challenges to complete genome sequencing, assembly, and annotation.

View Article and Find Full Text PDF

In proteomics, postproline cleaving enzymes (PPCEs), such as prolyl endopeptidase (PEP) and neprosin, complement proteolytic tools because proline is a stop site for many proteases. But while aiming at using PEP in online proteolysis, we found that this enzyme also displayed specificity to reduced cysteine. By LC-MS/MS, we systematically analyzed PEP sources and conditions that could affect this cleavage preference.

View Article and Find Full Text PDF
Article Synopsis
  • * A study on S9 peptidase from Bacillus subtilis (S9bs) has confirmed its carboxypeptidase activity, which was previously unclear, highlighting key structural elements essential for this function.
  • * The research also revealed S9bs forms stable tetramers and identified its molecular arrangement, providing insights that could aid in therapeutic and drug design related to S9 family enzymes.
View Article and Find Full Text PDF

Introduction: Prolyl-specific oligopeptidase (POP), one of the brain's highly expressed enzymes, is an important target for the therapy of central nervous system disorders, notably autism spectrum disorder, schizophrenia, Parkinson's, Alzheimer's disease, and dementia.

Method: The current study was designed to investigate 2,4-bis(trifluoromethyl) benzaldehyde- based thiosemicarbazones as POP inhibitors to treat the above-mentioned disorders. A variety of techniques, such as nuclear magnetic resonance (NMR), mass spectrometry (MS), and Fourier-transform infrared spectroscopy (FTIR), were used for the structural confirmation of synthesized compounds.

View Article and Find Full Text PDF

BACKGROUND X-PROLYL AMINOPEPTIDASE 3: (XPNPEP3) mutations are known to cause nephronophthisis-like nephropathy-1 (NPHPL1), a rare autosomal-recessive kidney disease characterized by progressive kidney failure and cystic kidney disease in childhood. The full phenotypic spectrum associated with mutations in XPNPEP3 is not fully elucidated. CASE PRESENTATION: A 13-year-old Chinese female patient with intellectual disability presented with a 2-year history of convulsions and fatigue, with a recent episode of swelling, breathlessness, and nocturnal dyspnea lasting 10 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!