Chikungunya virus infection has emerged in many countries over the past decade. There are no effective drugs for controlling the disease. To develop cell-based system for screening anti-virus drugs, a bi-cistronic baculovirus expression system was utilized to co-express viral structural proteins C (capsid), E2 and E1 and the enhanced green fluorescence protein (EGFP) in Spodoptera frugiperda insect cells (Sf21). The EGFP-positive Sf21 cells fused with each other and with uninfected cells to form a syncytium, allowing characterization of cholesterol and low pH requirements for syncytium formation. Western blot analysis showed three structural proteins were expressed in baculovirus infected cells. The structural proteins of Chikungunya virus that is required for cell fusion was determined with various recombinant baculoviruses bearing different lengths of the viral structural protein genes. Protein E1 was required for cell fusion and indicating that Chikungunya viral membrane fusion was a class II membrane fusion. It was also demonstrated that the heterologous expression of alphavirus monomeric E1 can induce insect cell fusions. Furthermore, this cell-based system provides a model for studying class II viral membrane fusion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2011.05.015DOI Listing

Publication Analysis

Top Keywords

membrane fusion
16
chikungunya virus
12
structural proteins
12
cell-based system
8
viral structural
8
required cell
8
cell fusion
8
viral membrane
8
fusion
6
cell-based analysis
4

Similar Publications

Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.

View Article and Find Full Text PDF

Rg1 Improves Alzheimer's disease by Regulating Mitochondrial Dynamics Mediated by the AMPK/Drp1 Signaling Pathway.

J Ethnopharmacol

December 2024

Hubei University of Chinese Medicine, Basic Medical College, Wuhan, Hubei, 430070, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Wuhan, Hubei, 430070, China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430070, China. Electronic address:

Ethnopharmacological Relevance: Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by a complex pathogenesis that includes Aβ deposition, abnormal phosphorylation of tau protein, chronic neuroinflammation, and mitochondrial dysfunction. In traditional medicine, ginseng is revered as the 'king of herbs'. Ginseng has the effects of greatly tonifying vital energy, strengthening the spleen and benefiting the lungs, generating fluids and nourishing the blood, and calming the mind while enhancing intelligence.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) plays important roles in the balance of oxidation and antioxidation in body mostly by scavenging superoxide anion free radicals (O). Previously, we reported a novel Cu/Zn SOD from jellyfish Cyanea capillata, named CcSOD1, which exhibited excellent SOD activity and high stability. TAT peptide is a common type of cell penetrating peptides (CPPs) that efficiently deliver extracellular biomacromolecules into cytoplasm.

View Article and Find Full Text PDF

Nuclear respiratory factor-1 (NRF1) induction drives mitochondrial biogenesis and attenuates amyloid beta-induced mitochondrial dysfunction and neurotoxicity.

Neurotherapeutics

December 2024

Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA; Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, 77030, USA. Electronic address:

Mitochondrial dysfunction is an important driver of neurodegeneration and synaptic abnormalities in Alzheimer's disease (AD). Amyloid beta (Aβ) in mitochondria leads to increased reactive oxygen species (ROS) production, resulting in a vicious cycle of oxidative stress in coordination with a defective electron transport chain (ETC), decreasing ATP production. AD neurons exhibit impaired mitochondrial dynamics, evidenced by fusion and fission imbalances, increased fragmentation, and deficient mitochondrial biogenesis, contributing to fewer mitochondria in brains of AD patients.

View Article and Find Full Text PDF

Integrated computational biophysics approach for drug discovery against Nipah virus.

Biochem Biophys Res Commun

December 2024

Laboratório de Modelagem Computacional - LaModel, Instituto de Ciências Exatas - ICEx, Universidade Federal de Alfenas UNIFAL-MG, 37133-840, Alfenas, Minas Gerais, Brazil. Electronic address:

The Nipah virus (NiV) poses a pressing global threat to public health due to its high mortality rate, multiple modes of transmission, and lack of effective treatments. NiV glycoprotein G (NiV-G) emerges as a promising target for the discovery of NiV drugs because of its essential role in viral entry and membrane fusion. Therefore, in this study, we applied an integrated computational and biophysics approach to identify potential inhibitors of NiV-G within a curated dataset of Peruvian phytochemicals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!