AI Article Synopsis

  • The study aimed to create a low expression cell line of DNMT1 in 16HBE cells to analyze its effects on the cell cycle and DNA methylation.
  • The researchers employed Lenti-virus induced RNA interference to introduce various shRNA fragments and utilized flow cytometry and 5-mC immunofluorescence to assess the cell cycle and DNA methylation levels.
  • Results showed a 44% decrease in DNMT1 protein levels without significant changes in the cell cycle or overall genomic DNA methylation in the modified cells compared to the control.

Article Abstract

Objective: To construct DNA methyltransferase 1 (DNMT1) low expression 16HBE cell line and observe the variation of cell cycle and global genomic DNA methylation.

Methods: The method of Lenti-virus induced RNA interference was applied to introduce four different shRNA fragment into 16HBE cells. Flow cytometry and 5-mC immunofluorescence methods were used to observe the cell cycle and global DNA methylation status of DNMT1 low expression 16HBE cells.

Results: The DNMT1 protein relative expression level of 16HBE-shDNMT1-4 cell line was down regulated about 44% (P < 0.05) compared with the control. No obvious differences of cell cycle and global genome DNA methylation status were observed between the 16HBE and 16HBE-shDNMT1.

Conclusion: The DNMT1 gene low expression cell is successfully constructed, and there are no obvious changes happened on the cell cycle and global genomic DNA methylation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

low expression
16
dna methylation
16
cell cycle
16
cycle global
16
methylation status
12
dna methyltransferase
8
global genome
8
genome dna
8
dnmt1 low
8
expression 16hbe
8

Similar Publications

Background: eHealth interventions constitute a promising approach to disease prevention, particularly because of their ability to facilitate lifestyle changes. Although a rather recent development, eHealth interventions might be able to promote brain health and reduce dementia risk in older adults.

Objective: This study aimed to explore the perspective of general practitioners (GPs) on the potentials and barriers of eHealth interventions for brain health.

View Article and Find Full Text PDF

A growing body of evidence suggest that the stem cell antigen-1 expressing (Sca-1) cells in the heart may be the cardiac endothelial stem/progenitor cells. Their endothelial cell (EC) functions, and their role in RV physiology and pathophysiology of right heart failure (RHF) remains poorly defined. This study investigated EC characteristics of rat cardiac Sca-1 cells, assessed spatial distribution and studied changes in Sca1 cells during RV remodelling in monocrotaline (MCT) model of pulmonary hypertension and RV remodeling.

View Article and Find Full Text PDF

Purpose: Trastuzumab deruxtecan (T-DXd) is currently approved for treating metastatic breast cancer (MBC) which is HER2-positive (immunohistochemistry [IHC] score of 3+ or ISH positivity) or HER2-low (IHC score of 1+ or IHC 2+/ISH negative), as well as for HER2-positive gastric cancer, HER2-mutant lung cancer, and HER2 overexpressing solid tumors. Given the increasing utilization of T-DXd, we sought to determine how HER2 receptor status might change following T-DXd therapy.

Design: We retrospectively reviewed patients with MBC who received T-DXd at The University of Texas MD Anderson Cancer Center.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapies have revolutionized the landscape of cancer treatment, in particular in the context of hematologic malignancies. However, for solid tumors that lack tumor-specific antigens, CAR-T cells can infiltrate and attack nonmalignant tissues expressing the CAR target antigen, leading to on-target, off-tumor toxicity. Severe on-target, off-tumor toxicities have been observed in clinical trials of CAR-T therapy for solid tumors, highlighting the need to address this issue.

View Article and Find Full Text PDF

Stemness-associated cell states are linked to chemotherapy resistance in AML. We uncovered a direct mechanistic link between expression of the stem cell transcription factor GATA2 and drug resistance. The GATA-binding protein 2 (GATA2) plays a central role in blood stem cell generation and maintenance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!