Background: Conotoxin has been proven to be effective in drug design and could be used to treat various disorders such as schizophrenia, neuromuscular disorders and chronic pain. With the rapidly growing interest in conotoxin, accurate conotoxin superfamily classification tools are desirable to systematize the increasing number of newly discovered sequences and structures. However, despite the significance and extensive experimental investigations on conotoxin, those tools have not been intensively explored.

Results: In this paper, we propose to consider suboptimal alignments of words with restricted length. We developed a scoring system based on local alignment partition functions, called free score. The scoring system plays the key role in the feature extraction step of support vector machine classification. In the classification of conotoxin proteins, our method, SVM-Freescore, features an improved sensitivity and specificity by approximately 5.864% and 3.76%, respectively, over previously reported methods. For the generalization purpose, SVM-Freescore was also applied to classify superfamilies from curated and high quality database such as ConoServer. The average computed sensitivity and specificity for the superfamily classification were found to be 0.9742 and 0.9917, respectively.

Conclusions: The SVM-Freescore method is shown to be a useful sequence-based analysis tool for functional and structural characterization of conotoxin proteins. The datasets and the software are available at http://faculty.uaeu.ac.ae/nzaki/SVM-Freescore.htm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133552PMC
http://dx.doi.org/10.1186/1471-2105-12-217DOI Listing

Publication Analysis

Top Keywords

support vector
8
superfamily classification
8
scoring system
8
conotoxin proteins
8
sensitivity specificity
8
conotoxin
7
classification
5
conotoxin protein
4
protein classification
4
classification free
4

Similar Publications

Hepatic cystic echinococcosis (HCE), a life-threatening liver disease, has 5 subtypes, i.e., single-cystic, polycystic, internal capsule collapse, solid mass, and calcified subtypes.

View Article and Find Full Text PDF

Flow prediction in sound-based uroflowmetry.

Sci Rep

January 2025

Department of Signal Theory and Communications, Universidad de Valladolid, 47002, Valladolid, Spain.

Sound-based uroflowmetry (SU) offers a non-invasive alternative to traditional uroflowmetry (UF) for evaluating lower urinary tract dysfunctions, enabling home-based testing and reducing the need for clinic visits. This study compares SU and UF in estimating urine flow rate and voided volume in 50 male volunteers (aged 18-60), with UF results from a Minze uroflowmeter as the reference standard. Audio signals recorded during voiding were segmented and machine learning algorithms (gradient boosting, random forest, and support vector machine) estimated flow parameters from three devices: Ultramic384k, Mi A1 smartphone, and Oppo smartwatch.

View Article and Find Full Text PDF

Background: Cardiovascular disease remains the leading cause of mortality worldwide. Cardiac fibrosis impacts the underlying pathophysiology of many cardiovascular diseases by altering structural integrity and impairing electrical conduction. Identifying cardiac fibrosis is essential for the prognosis and management of cardiovascular disease; however, current diagnostic methods face challenges due to invasiveness, cost, and inaccessibility.

View Article and Find Full Text PDF

All-in-one gene therapy alternative for DBAS.

Cell Stem Cell

January 2025

Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain; Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Madrid, Spain; Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040 Madrid, Spain. Electronic address:

Diamond-Blackfan anemia syndrome is a ribosomopathy classified among the bone marrow failure syndromes. This disease exhibits significant heterogeneity, with up to 24 genetic variants identified to date. Voit et al.

View Article and Find Full Text PDF

Significant efforts were currently being made worldwide to develop a tool capable of distinguishing between various harmful viruses through simple analysis. In this study, we utilized fluorescence excitation-emission matrix (EEM) spectroscopy as a rapid and specific tool with high sensitivity, employing a straightforward methodological approach to identify spectral differences between samples of respiratory infection viruses. To achieve this goal, the fluorescence EEM spectral data from eight virus samples was divided into training and test sets, which were then analyzed using random forest and support vector machine classification models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!