Background: Preliminary experimental studies have suggested that the in situ destruction of tumor tissue by local laser ablation (LA) may also stimulate host immunity against cancer. We investigated local and systemic induction of immune responses after laser ablation in the setting of residual tumor.

Methods: A murine colorectal cancer (CRC) liver metastasis model was used. Selected tumors of liver CRC bearing mice and livers of mice without tumor induction were treated with LA. Liver and tumor tissues from the ablation sites and from distant sites were collected at various time points following LA and changes in CD3+ T cells and Kupffer cells (F4/80 marker) infiltration and the expression of interferon gamma (IFNγ) were investigated by immunohistochemistry and ELISpot. Base line levels of CD3+ T cells and Kupffer cells were established in untreated mice.

Results: The presence of tumor induced significant accumulation of CD3+ T cells and Kupffer cells at the tumor-host interface, within the tumor vascular lakes and increased their baseline concentration within the liver parenchyma. LA of the liver induced accumulation of CD3+ T-cells and Kupffer cells at the site of injury and systemic induction of immune responses as discerned by the presence of IFNγ secreting splenocytes. LA of liver tumors induced significant increase of CD3+ T-cells at site of injury, within normal liver parenchyma, and the tumor-host interface of both ablated and distant tumors. In contrast Kupffer cells only accumulated in ablated tumors and the liver parenchyma but not in distant tumors. IFNγ expression increased significantly in ablated tumors and showed an increasing trend in distant tumors.

Conclusion: Laser ablation in addition to local tumor destruction induces local and systemic Th1 type immune responses which may play a significant role in inhibiting tumor recurrence from residual micrometastases or circulating tumor cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123581PMC
http://dx.doi.org/10.1186/1479-5876-9-83DOI Listing

Publication Analysis

Top Keywords

kupffer cells
20
laser ablation
16
immune responses
12
cd3+ cells
12
cells kupffer
12
liver parenchyma
12
liver
9
cells
9
responses laser
8
tumor
8

Similar Publications

Acute rejection (AR) is a significant complication in liver transplantation, impacting graft function and patient survival. Kupffer cells (KCs), liver-specific macrophages, can polarize into pro-inflammatory M1 or anti-inflammatory M2 phenotypes, both of which critically influence AR outcomes. Angiopoietin-like 4 (ANGPTL4), a secretory protein, is recognized for its function in regulating inflammation and macrophage polarization.

View Article and Find Full Text PDF
Article Synopsis
  • Tumor-associated macrophages (TAMs) play a significant role in cancer progression, but the impact of liver macrophages (Kupffer cells or KCs) on hepatocellular carcinoma (HCC) is not well understood.
  • This study uncovers how exosomes from HCC cells convert KCs into TAMs via an IL6-JAK1-ACAP4 signaling pathway, enhancing HCC metastasis.
  • The research also highlights bufalin, a compound that inhibits JAK1, preventing the phosphorylation of ACAP4 and potentially reducing HCC cell migration and metastasis, suggesting its therapeutic promise.
View Article and Find Full Text PDF

Alcohol-associated liver disease (ALD) is a growing global health concern and its prevalence and severity are increasing steadily. While bacterial endotoxin translocation into the portal circulation is a well-established key factor, recent evidence highlights the critical role of sterile inflammation, triggered by diverse stimuli, in alcohol-induced liver injury. This review provides a comprehensive analysis of the complex interactions within the hepatic microenvironment in ALD.

View Article and Find Full Text PDF

Aims: Carboxylesterase (Ces)1f is implicated in protection against hepatic inflammation, but it is unclear whether the enzyme has an influence in polarization of Kupffer cells (KCs), the innate immune cells mediating hepatic inflammatory injury including acute liver failure (ALF). In the present study, we aim to explore KC polarization induced by Ces1f in mice with lipopolysaccharide/D-galactosamine (LPS/D-GalN)-induced ALF. We adopted a novel delivery system, β-1,3-D-glucan-encapsulated Endoporter-siRNA particles, to specifically target KC Ces1f knockdown via tail vein injection in mice.

View Article and Find Full Text PDF
Article Synopsis
  • This study focused on how the adenosine A3 receptor (A3AR) influences the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) through the regulation of immune cells, particularly pro-inflammatory Kupffer cells derived from monocytes (MoKCs).
  • Researchers found that inhibiting A3AR, either through a drug called FM101 or by genetic deletion, significantly improved liver inflammation and fibrosis in model mice.
  • The results suggest that targeting A3AR may offer a novel therapeutic approach for treating MASLD by inducing cell death (necroptosis) in harmful immune cells, thereby promoting a healthier liver environment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!