Introduction: As an essential complement to chemically crosslinked hydrogels, drug delivery systems based on physical hydrogels with self-assembled nanostructures are gaining increasing attention, owing to potential advantages of reduced toxicity, convenience of in situ gel formation, stimuli-responsiveness, reversible sol-gel transition, and improved drug loading and delivery profiles.
Areas Covered: In this review, drug delivery systems based on physical hydrogels are discussed according to their self-assembled nanostructures, such as micelles, layer-by-layer constructs, supramolecular inclusion complexes, polyelectrolyte complexes and crystalline structures. The driving forces of the self-assembly include hydrophobic interaction, hydrogen bonding, electrostatic interaction, π-π stacking and weak van der Waals forces. Stimuli-responsive properties of physical hydrogels, including thermo- and pH-sensitivity, are considered with particular focus on self-assembled nanostructures.
Expert Opinion: Fabricating self-assembled nanostructures in drug delivery hydrogels, via physical interactions between polymer-polymer and polymer-drug, requires accurately controlled macro- or small molecular architecture and a comprehensive knowledge of the physicochemical properties of the therapeutics. A variety of nanostructures within hydrogels, with which payloads may interact, provide useful means to stabilize the drug form and control its release kinetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/17425247.2011.588205 | DOI Listing |
Biomacromolecules
January 2025
Department of Chemistry, Rice University, Houston, Texas 77005, United States.
In this work, we investigate the pH-responsive behavior of multidomain peptide (MDP) hydrogels containing histidine. Small-angle X-ray scattering confirmed that MDP nanofibers sequester nonpolar residues into a hydrophobic core surrounded by a shell of hydrophilic residues. MDPs with histidine on the hydrophilic face formed nanofibers at all pH values tested, but the morphology of the fibers was influenced by the protonation state and the location of histidine in the MDP sequence.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chemistry Department, Faculty of Science, Damietta University, Damietta 34517, Egypt. Electronic address:
The VCo-LDH/CS hydrogel beads were created by combining VCo-layered double hydroxide (VCo-LDH) and chitosan (CS) using a cross-linking process with epichlorohydrin. These beads were specifically designed to remove tetracycline (TTC). To characterize the VCo-LDH/CS hydrogel beads, several analytical techniques were used, with PXRD, XPS, FESEM, EDX, and FT-IR.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA. Electronic address:
Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; World Premier International Research Center Initiative, Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan. Electronic address:
Parkinson's disease (PD) is a neurodegenerative disease primarily affecting the central nervous system and impacting both the motor system and non-motor systems. Although administration of L-DOPA is effective, it is not a fundamental treatment and has side effects such as diurnal fluctuation and dyskinesia, highlighting the need for new treatment methods. There is a growing interest in dopaminergic neuron transplantation as a potential treatment.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Public Teaching, Qilu Medical University, Zibo 255300, China.
As an emerging self-powered technology, triboelectric nanogenerators have the characteristics of a simple structure, high conversion efficiency, diverse material selection, and stable output. Hydrogels have the advantages of flexibility, extensibility, and shape adaptability, which means that hydrogel-based triboelectric nanogenerators (H-TENGs) have high flexibility, self-healing abilities, conductivity, and fatigue resistance. They can still operate normally in scenarios involving bending, pressing, stretching, and folding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!