An atmospheric pressure microwave digestion method has been developed for the combined analysis of total phosphorus and Kjeldahl nitrogen in complex matrices. In comparison to the digestion steps in EPA Methods 365.4 (total phosphorus) and 351.x (Kjeldahl nitrogen), this method requires less time, eliminates the need for a catalyst, and reduces the toxicity of the waste significantly. It employs a microwave-assisted digestion step, using refluxing borosilicate glass vessels at atmospheric pressure. Traditionally, this method has a time-consuming sample preparation step and generates toxic waste through the use of heavy metal catalysts. These advantages are gained by the combination of a high boiling point acid (sulfuric acid) and the application of focused microwave irradiation, which enhances the digestion process by direct energy coupling. NIST standard reference materials 1572 (citrus leaves), 1577a (bovine liver), and 1566 (oyster tissue) and tryptophan were analyzed to validate the method. Phosphorus concentrations were determined by the colorimetric ascorbic acid method outlined in EPA Method 365.3. Kjeldahl nitrogen concentrations were determined using EPA Method 351.1. The results of the analyses showed good precision and are in excellent agreement with the NIST published values for both elements.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac960133wDOI Listing

Publication Analysis

Top Keywords

kjeldahl nitrogen
16
atmospheric pressure
12
total phosphorus
12
pressure microwave
8
sample preparation
8
combined analysis
8
analysis total
8
phosphorus kjeldahl
8
concentrations determined
8
epa method
8

Similar Publications

Insects are used as an alternative sustainable, protein-rich ingredient in fish, pet, pig and poultry diets. The significant difference between insect meals and common protein sources is the content of chitin. The nitrogen contained in chitin, which makes up 6.

View Article and Find Full Text PDF

Upgrading wastewater treatment plants (WWTPs) is a global practice for achieving increasingly stringent nutrient discharge objectives set by governments to accommodate population growth and reduce surface water pollution. However, associated downstream improvements in nutrient conditions are difficult to determine in nearshore regions of large aquatic ecosystems due to complex biophysical processes. We conducted a nine-year water quality study and analyzed the data using linear mixed models (LMMs) within a Before-After-Control-Impact (BACI) framework to assess effects of an upgrade to the Duffin Creek Water Pollution Control Plant (DCWPCP) on surface water nutrient conditions and proliferation of nuisance benthic algae (Cladophora glomerata) in nearshore Lake Ontario.

View Article and Find Full Text PDF

Eutrophication is one of the most relevant concerns due to the risk to water supply and food security. Nitrogen and phosphorus chemical species concentrations determined the risk and magnitude of eutrophication. These analyses are even more relevant in basins with intensive agriculture due to agrochemical discharges.

View Article and Find Full Text PDF

(L.) Skeels is a unique endemic species in Morocco, renowned for its ecological characteristics and socio-economic importance. In Morocco, recent years have seen an exacerbation of the harmful effects of climate change, leading to an alarming decline in the natural regeneration of this species in its original habitats.

View Article and Find Full Text PDF

Optimizing biochar-based column filtration systems for enhanced pollutant removal in wastewater treatment: A preliminary study.

Chemosphere

January 2025

Laboratory of Water, Biodiversity and Climate Change (EauBiodiCc), Faculty of Sciences Semlalia, University Cadi Ayyad, Marrakech, Morocco; National Centre for Studies and Research on Water and Energy (CNEREE), University Cadi Ayyad, Marrakech, Morocco. Electronic address:

Article Synopsis
  • The study tests biochar-based substrates for their effectiveness in removing pollutants from wastewater, focusing on determining the best biochar concentration for large-scale filters like constructed wetlands.
  • Preliminary lab tests using different concentrations of biochar (0%, 10%, 25%, and 50%) showed significant improvements in removing nitrogen, phosphorus, chemical oxygen demand, and total suspended solids in comparison to control filters.
  • The best results for pollutant removal were achieved with 10% biochar, indicating that a lower concentration is both economically and environmentally beneficial for wastewater treatment systems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!