The thermodynamic ionization constants (pK(a)(1), pK(a)(2), and pK(a)(3)) of ginkgolide B (9H-1,7a-(epoxymethano)-1H,6aH-cyclopenta[c]furo[2,3-b]furo-[3',2':3,4]cyclopenta[1,2-d]furan-5,9,12-(4H)-trione, 3-tert-butylhexahydro-4,7b,11-trihydroxy-8-methyl-) in aqueous solution have been settled by pH-metric and NMR studies. The three macroscopic pK(a) values as well as the water solubility and the water/n-octanol partition coefficient have been extracted from pH-metric data by means of a nonlinear regression methodology. NMR spectroscopy provided confirmation of the values of the macroscopic constants, information about the effective ionization pathways, and an estimation of the proportions of the various forms under physiologically relevant conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac950939g | DOI Listing |
Materials (Basel)
January 2025
China Building Materials Academy, Beijing 100024, China.
xTiO-(1-x)SiO (x = 2.9~8.2 mol%) glass specimens were synthesized using the flame hydrolysis technique.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, China.
A comprehensive strategy, including spectroscopic, molecular simulation, proteomics, and bioinformatics techniques, was employed to investigate a novel triazole, 5-(4-methoxyphenyl)-1-phenyl-1H-1,2,3-triazole, its interactions with high-abundance blood proteins, and identification of low-abundance proteins. The binding constants and thermodynamic parameters of the triazole to two high-abundance blood globular proteins, human serum albumin, and human immunoglobulin G (HIgG), were obtained by spectroscopic techniques and computational chemistry. The two-dimensional gel electrophoresis in combination with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed to isolate and identify differentially expressed low-abundance proteins in human blood serum samples following exposure to the triazole.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Intermolecular Interaction Laboratory, Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
This study extends previous research, particularly focusing on patented scientific objects No. ID: PL 240 353 B1, investigating the physicochemical properties of the methyl 3-azido- and 3-amino-2,3-dideoxysaccharides with a nucleoside scaffold similar to 3'-azidothymidine (AZT). The study utilizes multiwavelength spectrophotometric and potentiometric methods to evaluate the ionization of the saccharide units in aqueous solutions.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Organic Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
Lipophilicity and acidity/basicity are fundamental physical properties that profoundly affect the compound's pharmacological activity, bioavailability, metabolism, and toxicity. Predicting lipophilicity, measured by (1-octanol-water distribution coefficient logarithm), and acidity/basicity, measured by (negative of acid ionization constant logarithm), is essential for early drug discovery success. However, the limited availability of experimental data and poor accuracy of standard and assessment methods for saturated fluorine-containing derivatives pose a significant challenge to achieving satisfactory results for this compound class.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States.
Machine learning (ML) models now play a crucial role in predicting properties essential to drug development, such as a drug's logscale acid-dissociation constant (p). Despite recent architectural advances, these models often generalize poorly to novel compounds due to a scarcity of ground-truth data. Further, these models lack interpretability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!