Confocal laser scanning microscopy has become a most powerful tool to visualize and analyze the dynamic behavior of cellular molecules. Photobleaching of fluorochromes is a major problem with confocal image acquisition that will lead to intensity attenuation. Photobleaching effect can be reduced by optimizing the collection efficiency of the confocal image by fast z-scanning. However, such images suffer from distortions, particularly in the z dimension, which causes disparities in the x, y, and z directions of the voxels with the original image stacks. As a result, reliable segmentation and feature extraction of these images may be difficult or even impossible. Image interpolation is especially needed for the correction of undersampling artifact in the axial plane of three-dimensional images generated by a confocal microscope to obtain cubic voxels. In this work, we present an adaptive cubic B-spline-based interpolation with the aid of lookup tables by deriving adaptive weights based on local gradients for the sampling nodes in the interpolation formulae. Thus, the proposed method enhances the axial resolution of confocal images by improving the accuracy of the interpolated value simultaneously with great reduction in computational cost. Numerical experimental results confirm the effectiveness of the proposed interpolation approach and demonstrate its superiority both in terms of accuracy and speed compared to other interpolation algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.21017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!