Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have investigated the novel single-molecule magnet (NEt(4))[Mn(2)(5-Brsalen)(2)(MeOH)(2)Cr(CN)(6)] (1; 5-Brsalen = N,N'-ethylenebis(5-bromosalicylidene)iminato anion) using spectroscopic as well as magnetization and susceptibility measurements. Frequency-domain Fourier-transform terahertz electron paramagnetic resonance (FDFT THz-EPR) based on the generation of THz radiation from a synchrotron in combination with inelastic neutron scattering (INS) allows for the discrimination between intermultiplet and intramultiplet transitions. Together with ac/dc magnetic susceptibility measurements the obtained set of data provides a complete characterization of the lowest energetic magnetic excitations. We find that the new compound 1 exhibits much weaker intermolecular interactions than found in the closely related compound: K[Mn(2)(5-Brsalen)(2)(H(2)O)(2)Cr(CN)(6)] (2). Furthermore, two phonon lines in the vicinity of the magnetic excitations are detected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201100581 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!