Recent advances in the fabrication of complex particles and particle-based materials assisted by droplet-based microfluidics are reviewed. Monodisperse particles with expected internal structures, morphologies, and sizes in the range of nanometers to hundreds of micrometers have received a good deal of attention in recent years. Due to the capability of generating monodisperse emulsions and of executing precise control and operations on the suspended droplets inside the microchannels, droplet-based microfluidic devices have become powerful tools for fabricating complex particles with desired properties. Emulsions and multiple-emulsions generated in the microfluidic devices can be composed of a variety of materials including aqueous solutions, gels, polymers and solutions containing functional nanoparticles. They are ideal microreactors or fine templates for synthesizing advanced particles, such as polymer particles, microcapsules, nanocrystals, and photonic crystal clusters or beads by further chemical or physical operations. These particles are promising materials that may be applicable for many fields, such as photonic materials, drug delivery systems, and bio-analysis. From simple to complex, from spherical to nonspherical, from polymerization and reaction crystallization to self-assembly, this review aims to help readers be aware of the many aspects of this field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201001913 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Ritsumeikan University: Ritsumeikan Daigaku, Applied Chemistry, B805 Biolink, 1-1-1 Nojihigashi, 525-8577, Kusatsu, JAPAN.
Inorganic photochromic materials offer several advantages over organic compounds, including relatively inexpensive and higher thermal stability. However, tuning their color with the same component has remained a significant challenge. In this study, we demonstrate that the photochromic color of Cu-doped ZnS nanocrystals (NCs), which is initially pale yellow before light irradiation, can be tuned from gray to brown by adjusting the surface stoichiometry of Zn and S, which is controlled through the use of thiol and non-thiol ligands.
View Article and Find Full Text PDFACS Sens
January 2025
CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
Flexible pressure sensors are pivotal in advancing artificial intelligence, the Internet of Things (IoT), and wearable technologies. While microstructuring the functional layer of these sensors effectively enhances their performance, current fabrication methods often require complex equipment and time-consuming processes. Herein, we present a novel magnetization-induced self-assembly method to develop a magnetically grown microneedle array as a dielectric layer for flexible capacitive pressure sensors.
View Article and Find Full Text PDFNano Lett
January 2025
Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China.
Crystals with three-dimensional (3D) stereoscopic structures, characterized by diverse shapes, crystallographic planes, and morphologies, represent a significant advancement in catalysis. Differentiating and quantifying the catalytic activity of specific surface facets and sites at the single-particle level is essential for understanding and predicting catalytic performance. This study employs super-resolution radial fluctuations electrogenerated chemiluminescence microscopy (SRRF-ECLM) to achieve high-resolution mapping of electrocatalytic activity on individual 3D CuO crystals, including cubic, octahedral, and truncated octahedral structures.
View Article and Find Full Text PDFMater Horiz
January 2025
Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, People's Republic of China.
Passive daytime radiative cooling offers a promising approach to address energy, environmental, and safety issues caused by global warming. However, the contradiction between high radiative cooling performance and long-lasting ultraviolet (UV) durability is a primary limitation at the current stage. Here, inspired by the ability of epidermal cells and palisade cells on the leaf surface to protect internal leaf structures (such as chloroplasts and nuclei) under drought and high-temperature conditions, a double-layer passive radiative cooling (PRC) porous membrane, which consists of an upper protective layer densely packed with highly ultraviolet-reflective inorganic particles and a bottom cooling layer doped with a variety of optically characterized inorganic particles, was developed to overcome these challenges.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.
The imperative for developing robust tools to detect, analyze, and characterize viruses has become increasingly evident as they continue to threaten human health. In this review, we focus on recent advancements in studying human viruses with flow virometry (FV), an emerging technique that has gained considerable momentum over the past 5 years. These advancements include the application of FV in viral surface phenotyping, viral protein functionality, virus sorting, vaccine development, and diagnostics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!