Extracellular matrix and heart development.

Birth Defects Res A Clin Mol Teratol

Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.

Published: June 2011

The extracellular matrix (ECM) of the developing heart contains numerous molecules that form a dynamic environment that plays an active and crucial role in the regulation of cellular events. ECM molecules found in the heart include hyaluronan, fibronectin, fibrillin, proteoglycans, and collagens. Tight regulation of the spatiotemporal expression, and the proteolytic processing of ECM components by proteases including members of the ADAMTS family, is essential for normal cardiac development. Perturbation of the expression of genes involved in matrix composition and remodeling can interfere with a myriad of events involved in the formation of the four-chambered heart and result in prenatal lethality or cardiac malformations as seen in humans with congenital heart disease. In this review, we summarize what is known about the specific importance of some of the components of the ECM in relation to the cardiovascular development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144859PMC
http://dx.doi.org/10.1002/bdra.20810DOI Listing

Publication Analysis

Top Keywords

extracellular matrix
8
heart
5
matrix heart
4
heart development
4
development extracellular
4
ecm
4
matrix ecm
4
ecm developing
4
developing heart
4
heart numerous
4

Similar Publications

Characteristic patterns of UV-induced skin autofluorescence were determined for patients with Parkinson's disease (PD) and associated with dysmetabolic alterations, such as nonenzymatic protein glycation, an increase in extracellular matrix stiffness, impaired metabolism of tissue fluorophores, mitochondrial dysfunction, and accumulation of aberrant proteins. Key differences in skin autofluorescence spectra were for the first time observed in PD, making it possible to discriminate between PD patients and healthy persons or individuals without signs of chronic neurodegeneration. Namely, skin fluorescence related to the reflected signal upon excitation with UV light at 375 nm was lower in PD patients.

View Article and Find Full Text PDF

Purpose: Tendon-to-bone repair remains a surgical challenge. Although bone tunnel fixation is a common surgical technique whereby soft tissue is expected to heal against a bone tunnel interface, contemporary methods have yet to recapitulate biomechanical similarity to the native enthesis. In this study, we aimed to understand how inside-out longitudinal tendon inversion affects bone tunnel healing with the hypothesis that inversion removes the gliding epitenon surface to facilitate interface healing.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IVDD) is a major contributor to chronic back pain and disability, with limited effective therapeutic options. Current treatment options, including conservative management and surgical interventions, often fail to effectively halt disease progression and come with notable side effects. IVDD is characterized by the breakdown of the extracellular matrix (ECM) and the infiltration of inflammatory cells, which exacerbate disc degeneration.

View Article and Find Full Text PDF

Vascular diseases, such as hypertension, atherosclerosis, cerebrovascular, and peripheral arterial diseases, present major clinical and public health challenges, largely due to their common underlying process: vascular remodeling. This process involves structural alterations in blood vessels, driven by a variety of molecular mechanisms. The inhibitor of DNA-binding/differentiation-3 (), a crucial member of ID family of transcriptional regulators, has been identified as a key player in vascular biology, significantly impacting the progression of these diseases.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by repetitive alveolar injuries with excessive deposition of extracellular matrix (ECM) proteins. A crucial need in understanding IPF pathogenesis is identifying cell types associated with histopathological regions, particularly local fibrosis centers known as fibroblast foci. To address this, we integrated published spatial transcriptomics and single-cell RNA sequencing (scRNA-seq) transcriptomics and adopted the Query method and the Overlap method to determine cell type enrichments in histopathological regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!