Rho GTPases in hematopoietic stem/progenitor cell migration.

Methods Mol Biol

Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.

Published: September 2011

Rho GTPases including RhoA, Rac1, and Cdc42 are a class of intracellular signaling proteins critical for the regulation of cytoskeleton organization, adhesion, and migration. Molecular mechanisms of mammalian cell migration were first revealed in fibroblasts where RhoA, Rac1, and Cdc42 facilitate in the multistep process including establishment and maintenance of polarity, formation of actin-rich protrusions, remodeling of adhesive contacts, and generation of force. In hematopoietic stem/progenitor cells, Rho GTPases relay signals from chemokines and cytokines such as SDF-1α and SCF to the actin and microtubule cytoskeleton through effector kinases and/or adaptor molecules that affect adhesion or transcription. Comprehensive use of murine conditional gene knockout technology combined with biochemical approaches in recent studies allows for physiologically relevant investigations of the involvement of Rho GTPases in hematopoietic stem/progenitor cell migration, providing important mechanisms for the stem/progenitor maintenance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-61779-145-1_21DOI Listing

Publication Analysis

Top Keywords

rho gtpases
16
hematopoietic stem/progenitor
12
cell migration
12
gtpases hematopoietic
8
stem/progenitor cell
8
rhoa rac1
8
rac1 cdc42
8
rho
4
stem/progenitor
4
migration
4

Similar Publications

Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)-glycogen synthase kinase-3β (GSK3β)-small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7's biological features is valuable.

View Article and Find Full Text PDF

The Expression Regulation and Cancer-Promoting Roles of RACGAP1.

Biomolecules

December 2024

Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China.

RACGAP1 is a Rho-GTPase-activating protein originally discovered in male germ cells to inactivate Rac, RhoA and Cdc42 from the GTP-bound form to the GDP-bound form. GAP has traditionally been known as a tumor suppressor. However, studies increasingly suggest that overexpressed RACGAP1 activates Rac and RhoA in multiple cancers to mediate downstream oncogene overexpression by assisting in the nuclear translocation of signaling molecules and to promote cytokinesis by regulating the cytoskeleton or serving as a component of the central spindle.

View Article and Find Full Text PDF

Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.

View Article and Find Full Text PDF

Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli.

View Article and Find Full Text PDF

The Gene Product STIL Is Essential for Dendritic Spine Formation.

Cells

January 2025

Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai 480-0392, Aichi, Japan.

Dendritic spine formation/maintenance is highly dependent on actin cytoskeletal dynamics, which is regulated by small GTPases Rac1 and Cdc42 through their downstream p21-activated kinase/LIM-kinase-I/cofilin pathway. ARHGEF7, also known as ß-PIX, is a guanine nucleotide exchange factor for Rac1 and Cdc42, thereby activating Rac1/Cdc42 and the downstream pathway, leading to the upregulation of spine formation/maintenance. We found that STIL, one of the primary microcephaly gene products, is associated with ARHGEF7 in dendritic spines and that knockdown of resulted in a significant reduction in dendritic spines in neurons both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!