The formation of CuCl nanoplatelets from the ionic liquid precursor (ILP) butylpyridinium tetrachlorocuprate [C(4)Py](2)[CuCl(4)] using ascorbic acid as a reducing agent was investigated. In particular, electron paramagnetic resonance (EPR) spectroscopy was used to evaluate the interaction between ascorbic acid and the Cu(II) ion before reduction to Cu(I). EPR spectroscopy suggests that the [CuCl(4)](2-) ion in the neat IL is a distorted tetrahedron, consistent with DFT calculations. Addition of ascorbic acid leads to the removal of one chloride from the [CuCl(4)](2-) anion, as shown by DFT and the loss of symmetry by EPR. DFT furthermore suggests that the most stable adduct is formed when only one hydroxyl group of the ascorbic acid coordinates to the Cu(II) ion.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1cp20648fDOI Listing

Publication Analysis

Top Keywords

ascorbic acid
20
interaction ascorbic
8
ionic liquid
8
liquid precursor
8
precursor ilp
8
epr spectroscopy
8
cuii ion
8
acid
5
acid tetrachlorocuprate
4
ion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!