Purpose: Oxidative stress is implicit in the pathological changes associated with glaucoma. The purpose of this study was to compare levels of oxidative stress in glial fibrillary acid-negative protein (GFAP) lamina cribrosa (LC) cells obtained from the optic nerve head (ONH) region of 5 normal (NLC) and 4 glaucomatous (GLC) human donor eyes and to also examine mitochondrial function and calcium homeostasis in this region of the ONH.

Methods: Intracellular reactive oxygen species (ROS) production was examined by a thiobarbituric acid reactive substances (TBARS) assay which measures malondialdehyde (MDA), a naturally occurring product of lipid peroxidation and is used as an indicator of oxidative stress. Mitochondrial membrane potential (MMP) and intracellular calcium ([Ca(2+)](i)) levels were evaluated by flow cytometry using the JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetrabenzimidazolecarbocyanine iodide) and fluo-4/AM probes respectively. Anti-oxidant and Ca(2+) transport system gene and protein expression were determined by real time polymerase chain reaction (RT-PCR) using gene-specific primer/probe sets and western immunoblotting, respectively.

Results: Intracellular ROS production was increased in GLC compared to NLC (27.19 ± 7.05 µM MDA versus 14.59 ± 0.82 µM MDA, p < 0.05). Expression of the anti-oxidants Aldo-keto reductase family 1 member C1 (AKR1C1) and Glutamate cysteine ligase catalytic subunit (GCLC) were significantly lower in GLC (p = 0.02) compared to NLC control. MMP was lower in GLC (57.5 ± 6.8%) compared to NLC (41.8 ± 5.3%). [Ca(2+)](i) levels were found to be higher (p < 0.001) in GLC cells compared to NLC. Expression of the plasma membrane Ca(2+)/ATPase (PMCA) and the sodium-calcium (NCX) exchangers were lower, while intracellular sarco-endoplasmic reticulum Ca(2+)/ATPase 3 (SERCA) expression was significantly higher in GLC compared to NLC. Subjection of NLC cells to oxidative stress (200 µM H(2)0(2)) reduced expression of Na(+)/Ca2(+) exchanger 1 (NCX 1), plasma membrane Ca2+ ATPase 1 (PMCA 1), and PMCA 4 as determined by RT-PCR.

Conclusions: Our data finds evidence of oxidative stress, mitochondrial dysfunction and impaired calcium extrusion in GLC cells compared to NLC cells and suggests their importance in the pathological changes occurring at the ONH in glaucoma. Future therapies may target reducing oxidative stress and / or [Ca(2+)](i).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3102025PMC

Publication Analysis

Top Keywords

oxidative stress
28
compared nlc
24
stress mitochondrial
12
mitochondrial dysfunction
8
lamina cribrosa
8
cribrosa cells
8
pathological changes
8
nlc
8
ros production
8
[ca2+]i levels
8

Similar Publications

Obesity is a rapidly growing health problem worldwide, affecting both adults and children and increasing the risk of chronic diseases such as type 2 diabetes, hypertension and cardiovascular disease (CVD). In addition, obesity is closely linked to chronic kidney disease (CKD) by either exacerbating diabetic complications or directly causing kidney damage. Obesity-related CKD is characterized by proteinuria, lipid accumulation, fibrosis and glomerulosclerosis, which can gradually impair kidney function.

View Article and Find Full Text PDF

Objective: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly impairs muscle regeneration following injuries, contributing to numerous complications and reduced quality of life. There is an urgent need for therapeutic strategies that can enhance muscle regeneration and alleviate these pathological mechanisms. In this study, we evaluate the therapeutic efficacy of W-GA nanodots, which are composed of gallic acid (GA) and tungstate (W6+), on muscle regeneration in type 2 diabetes mellitus (T2D)-induced muscle injury, with a focus on their anti-inflammatory and antioxidative effects.

View Article and Find Full Text PDF

Because acute kidney injuries (AKI) are one of the critical health problems worldwide, studies on the risk factors, mechanisms, and treatment strategies seem necessary. Glycerol (GLY), known to induce cell necrosis via myoglobin accumulation in renal tubules, is widely used as an AKI model. This study aimed to evaluate the protective effects of gallic acid (GA) against GLY-induced AKI.

View Article and Find Full Text PDF

Relationship between oxidative stress and endometrial polyps in pre-and postmenopausal women.

Pak J Med Sci

January 2025

Almila Senat, Department of Biochemistry, Republic of Turkey Ministry of Health, Taksim Training and Research Hospital, Istanbul, Turkey.

Objective: This study aimed to investigate the relationship between oxidative stress (OS) and endometrial polyps (EP) in pre- versus postmenopausal women with abnormal uterine bleeding.

Methods: This prospective case control study was conducted in the Gynecology Department of Ankara Bilkent City Hospital between January and December 2019. In this study, the EP and control groups included 45 participants each (30 pre- and 15 postmenopausal women).

View Article and Find Full Text PDF

Assembly of ceria-Nrf2 nanoparticles as macrophage-targeting ROS scavengers protects against myocardial infarction.

Front Pharmacol

January 2025

The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China.

Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide, and mitigating oxidative stress is crucial in managing MI. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in combating oxidative stress and facilitating cardiac remodeling post-MI. Here, we engineered Cerium oxide (CeO) nanoparticle-guided assemblies of ceria/Nrf2 nanocomposites to deliver Nrf2 plasmids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!