The membrane cofactor protein, CD46 represents a complement inhibitor, which protects autologous cells from complement-mediated cytotoxicity. On tumor cells, CD46 may exhibit the potential to protect them from immune responses of the host. The present study aimed at evaluation of prognostic significance of CD46 expression in breast cancers. The analyses were performed on 70 samples of breast cancer. Immunohistochemical reactions were performed on paraffin sections of studied tumors using monoclonal antibodies directed against CD46. Results of the immunohistochemical reactions and of clinical observations were subjected to statistical analysis. Multivariate analysis showed that expression of CD46 and involvement of lymph nodes represent independent risk factors for disease-free survival and overall survival. Kaplan-Meier analysis showed that patients with tumors negative for CD46 have an increased progression-free time and overall survival time as compared with patients with the CD46-positive tumors. The study demonstrates that breast cancers manifest CD46 expression and that it is linked to a less favorable prognosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/PAI.0b013e31821a0be9 | DOI Listing |
Viruses
November 2024
Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA.
Certain species D human adenoviruses (HAdV-D19, -D37, and -D64) are causative agents of epidemic keratoconjunctivitis. HAdV-D37 has previously been shown to bind CD46 (membrane cofactor protein) and sialic acid as adhesion receptors. HAdV-D64 is genetically highly similar to HAdV-D37, with an identical fiber protein sequence, but differs substantially in its penton base and hexon proteins, two other major capsid components, due to genetic recombination.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Otolaryngology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Nasopharyngeal carcinoma (NPC) refers to a cancerous tumor that develops in the upper and side walls of the nasopharyngeal cavity. Typically, individuals are often diagnosed with the disease when it has already progressed significantly, and those with advanced NPC tend to have an unfavorable outlook in terms of response rate to targeted treatments and overall clinical survival. Various molecular mechanisms, including Myeloid-derived suppressor cells and factors like PD-L1, have been explored to enhance the outcome of NPC.
View Article and Find Full Text PDFGastroenterol Rep (Oxf)
December 2024
Department of Cardiovascular Surgery, Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, P. R. China.
Background: Hypercoagulability has been shown to act as an important component of ulcerative colitis (UC) pathogenesis and disease activity, and is strongly correlated with the occurrence of venous thromboembolism (VTE). This study aimed at providing novel therapeutic clues for hypercoagulable active UC.
Methods: The coagulation score model was developed using VTE cohorts, and the predictive performance of this model was evaluated by coagulation subtypes of UC patients, which were clustered by the unsupervised method.
Malays J Pathol
December 2024
Universiti Tunku Abdul Rahman, M. Kandiah Faculty of Medicine and Health Sciences, Department of Pre-clinical Sciences, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia.
Introduction: The current first-line therapy for nasopharyngeal carcinoma (NPC) is often associated with long-term complications. Oncolytic measles virus (MV) therapy offers a promising alternative to cancer therapy. This study aims to investigate the efficacy of MV in killing NPC cells in vitro, both with or without resistance to radiation and drug therapy.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
December 2024
Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA. Electronic address:
The acquisition of ferrous iron (Fe) is crucial for the survival of many pathogenic bacteria living within acidic and/or anoxic conditions such as Vibrio cholerae, the causative agent of the disease cholera. Bacterial pathogens utilize iron as a cofactor to drive essential metabolic processes, and the primary prokaryotic Fe acquisition mechanism is the ferrous iron transport (Feo) system. In V.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!