Background: Deletions or mutations of the phosphatase and tensin homolog (PTEN) are frequently observed in malignant glioma and are responsible for progression of the disease. Since the molecule is a promising target for gene therapy, the effects of PTEN on glioma proliferation in combination with the anti-neoplastic agent, temozolomide, and ionizing radiation were investigated.

Materials And Methods: An adenoviral vector encoding PTEN was used. After infection, changes in proliferation, the cell cycle, as well as drug- and radiosensitivity were investigated.

Results: Expression of PTEN led to a 1.21-fold prolongation of the doubling time of the cells. It reduced G(1) and increased G(2)/M populations. Forced PTEN expression conferred sensitivity to temozolomide and/or ionizing radiation.

Conclusion: In addition to counteracting cell proliferation, expression of PTEN presented advantages in the chemo- and radiosensitivity of glioma cells. Methods for up-regulation of PTEN may have a role in increasing the efficacy of current adjuvant therapies.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pten
8
drug- radiosensitivity
8
malignant glioma
8
glioma cells
8
expression pten
8
pten proliferation
4
proliferation drug-
4
radiosensitivity malignant
4
glioma
4
cells background
4

Similar Publications

Atypical polypoid adenomyoma (APA) is a benign uterine lesion with a premalignant potential and occurs in women of reproductive age. The histological pattern is characterized by irregular epithelial proliferation and muscular stroma. Based on a case report, we performed a systematic review of the literature to assess the main immunohistochemical and molecular markers that contribute to its differential diagnosis against endometrial adenocarcinoma (EC).

View Article and Find Full Text PDF

Background/objectives: Osteoporosis causes a bone mass reduction and often determines acute and chronic pain. Understanding the biochemical and neurophysiological mechanisms behind this pain is crucial for developing new, effective rehabilitative and therapeutic approaches. This systematic review synthesizes recent advances in muscle-bone interactions and molecular pathways related to osteoporosis-associated pain.

View Article and Find Full Text PDF

Backgrounds: Recent studies have proven the oncogenic role of kinesin family member 20A () in several cancers. Tumor-associated macrophages (TAMs) were reported to participate in tumor initiation and metastasis. In this study, we aimed to explore the detailed mechanism underlying in regulating the progression of ovarian cancer and its involvement with TAMs.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) is a prevalent yet manageable respiratory condition. However, treatments presently used normally have side effects and cannot cure COPD, making it urgent to explore effective medications. The ginsenoside Rg3 (Rg3) has been shown to have anti-inflammatory and anti-tumor properties and can improve COPD.

View Article and Find Full Text PDF

[Parkin deletion affects PINK1/Parkin-mediated mitochondrial autophagy to exacerbate neuroinflammation and accelerate progression of Parkinson's disease in mice].

Nan Fang Yi Ke Da Xue Xue Bao

December 2024

Anhui Provincial Center for Neural Regeneration Technology and New Medical Materials Engineering Research, Bengbu Medical University, Bengbu 233000, China.

Objectives: To investigate the role of mitochondrial autophagy disorder caused by deletion of E3 ubiquitin ligase Parkin in neuroinflammation in a mouse model of MPTP-induced Parkinson's disease (PD).

Methods: Wild-type (WT) male C57BL/6 mice and Parkin mice were given intraperitoneal injections with MPTP or PBS for 5 consecutive days, and the changes in motor behaviors of the mice were observed using open field test. The effects of Parkin deletion on PD development and neuroinflammation were evaluated using immunofluorescence and Western blotting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!