Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Insulin recruits muscle microvasculature, thereby increasing endothelial exchange surface area. Free fatty acids (FFAs) cause insulin resistance by activating inhibitor of κB kinase β. Elevating plasma FFAs impairs insulin's microvascular and metabolic actions in vivo. Whether salsalate, an anti-inflammatory agent, prevents FFA-induced microvascular and/or metabolic insulin resistance in humans is unknown.
Research Design And Methods: Eleven healthy, young adults were studied three times in random order. After an overnight fast, on two occasions each subject received a 5-h systemic infusion of Intralipid ± salsalate pretreatment (50 mg/kg/day for 4 days). On the third occasion, saline replaced Intralipid. A 1 mU/kg/min euglycemic insulin clamp was superimposed over the last 2-h of each study. Skeletal and cardiac muscle microvascular blood volume (MBV), microvascular flow velocity (MFV), and microvascular blood flow (MBF) were determined before and after insulin infusion. Whole body glucose disposal rates were calculated from glucose infusion rates.
Results: Insulin significantly increased skeletal and cardiac muscle MBV and MBF without affecting MFV. Lipid infusion abolished insulin-mediated microvascular recruitment in both skeletal and cardiac muscle and lowered insulin-stimulated whole body glucose disposal (P<0.001). Salsalate treatment rescued insulin's actions to recruit muscle microvasculature and improved insulin-stimulated whole body glucose disposal in the presence of high plasma FFAs.
Conclusions: High plasma concentrations of FFAs cause both microvascular and metabolic insulin resistance, which can be prevented or attenuated by salsalate treatment. Our data suggest that treatments aimed at inhibition of inflammatory response might help alleviate vascular insulin resistance and improve metabolic control in patients with diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120177 | PMC |
http://dx.doi.org/10.2337/dc10-2345 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!