This study was undertaken to evaluate the role of collagen matrix to enhance platelet-rich plasma (PRP) effects on pro-inflammatory cytokine-induced arthritic model. We have previously demonstrated the highly regenerative roles of PRP to restore disc degeneration and osteoporosis. In this study, PRP modulated by collagen matrix was used as a regenerative and anti-inflammatory mediator to rescue the chondrocyte degeneration induced by pro-inflammatory cytokines IL-1β (10 ng/ml)+TNF-α (20 ng/ml). First, the MTT result indicated that 1 ng/ml TGF-β1 in PRP showed an optimal dosage for chondrocytes proliferation. The chondrogenic-specific gene expressions were rescued by PRP from the inhibition of IL-1β+TNF-α, especially under the modulation of collagen matrix. The inflammatory molecules activated by IL-1β+TNF-α were also significantly diminished by PRP with collagen matrix. The membrane receptors integrin α1β1 and CD44 were strongly inhibited by IL-1β+TNF-α, while this inhibition was then recovered by PRP in collagen coating condition. In a 3D model encapsulated with collagen, PRP-induced chondrogenesis were highly enhanced, such as strong restoration of type II collagen and proteoglycan from the inhibition of IL-1β+TNF-α. The result indicated that collagen matrix enhances the effect of PRP on chondrogenesis in response to pro-inflammatory cytokines. The combination of PRP and collagen matrix might facilitate a physiological microenvironment beneficial for maintaining chondrocyte homeostasis and represents an advanced osteoarthritis therapy for clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2011.05.002DOI Listing

Publication Analysis

Top Keywords

collagen matrix
24
prp collagen
12
collagen
10
prp
9
platelet-rich plasma
8
pro-inflammatory cytokines
8
result indicated
8
inhibition il-1β+tnf-α
8
matrix
6
regenerative potentials
4

Similar Publications

Objective: This study explores whether hyaluronic acid (HA) of different molecular weights and collagen, given their role in tendon extracellular matrix maintenance, have a synergistic effect on human tendon-derived cells, with the aim to improve the treatment of tendinopathy.

Material: Human monocytes (CRL-9855™) and primary Achilles tendon-derived cells.

Treatment: The collagen/HA ratio was based on the formulation of the commercial food supplement TendoGenIAL™.

View Article and Find Full Text PDF

Chronic heart failure, caused by myocardial fibrosis after acute myocardial infarction (AMI), remains a serious clinical problem that needs urgent resolution. Nitro-oleic acid (OA-NO), an electrophilic nitro-fatty acid found in human plasma, is believed to regulate various pathophysiological functions, particularly anti-inflammation and anti-fibrosis. However, the role of OA-NO in AMI remains unexplored.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how high glucose levels in diabetes lead to kidney cell damage through the activation of a signaling pathway involving DJ-1 and PTEN.
  • DJ-1 is found to be upregulated in kidney cells under high glucose conditions, which triggers the Akt/mTORC1 signaling pathway, resulting in cell growth and fibrosis.
  • The research indicates that inhibiting DJ-1 can prevent glucose-induced cell growth and damage, while overexpressing DJ-1 replicates the harmful effects, highlighting its role in renal injury related to diabetes.
View Article and Find Full Text PDF

Background: Injectable biostimulator treatments stimulate endogenous collagen in aging skin, but whether they act through similar pathways is unknown. This study evaluates two biostimulatory agents' effects on genes, expressed proteins, and respective pathways as potential aging biomarkers and treatment outcomes.

Methods: This 13-week, randomized, single-center, comparative study compared volume change and gene expression stimulated by poly-L-lactic acid (PLLA-SCATM) and calcium hydroxylapatite (CaHA-R) via punch biopsy in the nasolabial fold (NLF).

View Article and Find Full Text PDF

Background: Liver fibrosis is caused by chronic toxic or cholestatic liver injury. Fibrosis results from the recruitment of myeloid cells into the injured liver, the release of inflammatory and fibrogenic cytokines, and the activation of myofibroblasts, which secrete extracellular matrix, mostly collagen type I. Hepatic myofibroblasts originate from liver-resident mesenchymal cells, including HSCs and bone marrow-derived CD45+ collagen type I+ expressing fibrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!