Background: Fibin was initially discovered as a secreted signal molecule essential for pectoral fin bud initiation in zebrafish. Currently, there is little information about the molecular architecture and biological relevance of fibin in humans and other mammals.
Results: Fibin is expressed in cerebellum, skeletal muscle and many other embryonic and adult mouse tissues suggesting not only a role during embryonic development but also in adult functions. A 2.5-kbp genomic sequence fragment upstream of the coding sequence is sufficient to drive and regulate fibin expression through stimulation by glucocorticoids, activators of the protein kinase C signalling pathways and manganese ions. Fibin is an evolutionarily conserved protein, carries a cleavable signal peptide (amino acids 1-18) and is glycosylated at Asn30. The two conserved cysteines participate in intermolecular disulfide bond and multimer formation. Although fibin displays all features of a secretory protein, it is mostly retained in the endoplasmic reticulum when heterologously expressed.
Conclusion: Fibin is functionally relevant during embryogenesis and adult life. Its expression is regulated by a number of cellular signalling pathways and the protein is routed via the secretory pathway. However, proper secretion presumably requires an unknown covalently-linked or associated co-factor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115872 | PMC |
http://dx.doi.org/10.1186/1471-2091-12-26 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!