Background: Activation of peroxisome proliferator-activated receptor (PPAR)gamma is associated with bone loss and increased fracture risk, while PPARalpha activation seems to have positive skeletal effects. To further explore these effects we have examined the effect of the PPARalpha agonists fenofibrate and Wyeth 14643, and the PPARgamma agonist pioglitazone, on bone mineral density (BMD), bone architecture and biomechanical strength in ovariectomized rats.

Methods: Fifty-five female Sprague-Dawley rats were assigned to five groups. One group was sham-operated and given vehicle (methylcellulose), the other groups were ovariectomized and given vehicle, fenofibrate, Wyeth 14643 and pioglitazone, respectively, daily for four months. Whole body and femoral BMD were measured by dual X-ray absorptiometry (DXA), and biomechanical testing of femurs, and micro-computed tomography (microCT) of the femoral shaft and head, were performed.

Results: Whole body and femoral BMD were significantly higher in sham controls and ovariectomized animals given fenofibrate, compared to ovariectomized controls. Ovariectomized rats given Wyeth 14643, maintained whole body BMD at sham levels, while rats on pioglitazone had lower whole body and femoral BMD, impaired bone quality and less mechanical strength compared to sham and ovariectomized controls. In contrast, cortical volume, trabecular bone volume and thickness, and endocortical volume were maintained at sham levels in rats given fenofibrate.

Conclusions: The PPARalpha agonist fenofibrate, and to a lesser extent the PPARaplha agonist Wyeth 14643, maintained BMD and bone architecture at sham levels, while the PPARgamma agonist pioglitazone exaggerated bone loss and negatively affected bone architecture, in ovariectomized rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3127763PMC
http://dx.doi.org/10.1186/1472-6823-11-11DOI Listing

Publication Analysis

Top Keywords

wyeth 14643
16
agonist pioglitazone
12
bone loss
12
ovariectomized rats
12
bone architecture
12
body femoral
12
femoral bmd
12
sham levels
12
bone
10
peroxisome proliferator-activated
8

Similar Publications

The PPAR-α selective agonist WY14643 improves lupus nephritis via the downregulation of the RORγT/STAT3 signaling pathway in MRL/lpr mice.

Int Immunopharmacol

January 2025

Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia. Electronic address:

Systemic lupus erythematosus (SLE) is a classic autoimmune disorder that mostly affects young women and involves various organs, such as the skin, joints, central nervous system, and kidneys. WY14643, a selective agonist of peroxisome proliferator-activated receptor-α, has previously shown anti-inflammatory effects in various disease models. However, its effects on lupus nephritis are yet to be explored.

View Article and Find Full Text PDF

E2F3a activates Gadd45b gene expression through PPARα-mediated transcriptional regulation in hepatic cells.

Mol Cells

December 2024

Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea. Electronic address:

Growth arrest and DNA damage-inducible beta (GADD45b) plays a critical role in intracellular events such as cell growth and apoptosis. Although the functional study of GADD45b has been conducted, the mechanism for the transcriptional regulation of GADD45b is largely unknown. Due to the drastic induction of hepatic GADD45b mRNA by peroxisome proliferator-activated receptor alpha activation in wild-type mice, we investigated a key factor that affects the upregulation of GADD45b mRNA.

View Article and Find Full Text PDF

Internal concentrations (ICs) are crucial for linking exposure to effects in the development of New Approach Methodologies. ICs of chemicals in aquatic organisms are primarily driven by hydrophobicity and modulated by biotransformation and efflux. Comparing the predicted baseline to observed toxicity enables the estimation of effect specificity, but biological processes can lead to overestimating ICs and bias the specificity assessment.

View Article and Find Full Text PDF

Liver cancer is the fourth leading cause of cancer-related deaths with a steadily increasing rate worldwide, as a well-known hallmark of liver cancer, metabolic alterations are related to liposomal changes, a common characteristic of primary liver cancers based on recent lipidomics studies. Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor with important lipid homeostasis function, therefore we aimed to understand the molecular mechanisms and pathways that activate PPARα after using PPAR-α agonist WY-14643 and identify candidate biomarkers related to PPARα activity and evaluate their effects in liver cancer. The data from differently expressed genes (DEGs) between liver cancer tissue from obese subjects alone and liver tissue after treatment were evaluated by DESeq2 and module genes were analyzed using weighted gene co-expression network analysis (WGCNA).

View Article and Find Full Text PDF

Regulation of hepatic xenosensor function by HNF4alpha.

Toxicol Sci

August 2024

Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, United States.

Nuclear receptors such as constitutive androstane receptor (CAR), pregnane X receptor (PXR), and peroxisome proliferator-activated receptor-alpha (PPARα), and transcription factors with nuclear receptor type activity such as aryl hydrocarbon receptor (AhR) function as xenobiotic sensors. Hepatocyte nuclear factor 4alpha (HNF4α) is a highly conserved orphan nuclear receptor essential for liver function. We tested the hypothesis that HNF4α is essential for the function of these 4 major xenosensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!